316 research outputs found

    Percutaneous transluminal angioplasty in patients with peripheral arterial disease does not affect circulating monocyte subpopulations

    Get PDF
    Monocytes are mononuclear cells characterized by distinct morphology and expression of CD14 and CD16 surface receptors. Classical, quiescent monocytes are positive for CD14 (lipopolysaccharide receptor) but do not express Fc gamma receptor III (CD16). Intermediate monocytes coexpress CD16 and CD14. Nonclassical monocytes with low expression of CD14 represent mature macrophage-like monocytes. Monocyte behavior in peripheral arterial disease (PAD) and during vessel wall directed treatment is not well defined. This observation study aimed at monitoring of acute changes in monocyte subpopulations during percutaneous transluminal angioplasty (PTA) in PAD patients. Patients with Rutherford 3 and 4 PAD with no signs of inflammatory process underwent PTA of iliac, femoral, or popliteal segments. Flow cytometry for CD14, CD16, HLA-DR, CD11b, CD11c, and CD45RA antigens allowed characterization of monocyte subpopulations in blood sampled before and after PTA (direct angioplasty catheter sampling). Patients were clinically followed up for 12 months. All 61 enrolled patients completed 12-month follow-up. Target vessel failure occurred in 12 patients. While absolute counts of monocyte were significantly lower after PTA, only subtle monocyte activation after PTA (CD45RA and ÎČ-integrins) occurred. None of the monocyte parameters correlated with long-term adverse clinical outcome. Changes in absolute monocyte counts and subtle changes towards an activation phenotype after PTA may reflect local cell adhesion phenomenon in patients with Rutherford 3 or 4 peripheral arterial disease

    Land-Focused Changes in the Updated GEOS FP System (Version 5.25)

    Get PDF
    Many of the changes imposed in the January 2020 upgrade from Version 5.22 to 5.25 of the Goddard Earth Observing System (GEOS) Forward Processing (FP) analysis system were designed to increase the realism of simulated land variables. The changes, which consist of both land model parameter updates and improvements to the physical treatments employed for various land processes, have generally positive or neutral impacts on the character of the FP product, as documented here

    Fabrication of vascularized scaffolds for the treatment of spinal cord injury

    Get PDF
    The overall goal of the research presented here is to evaluate the efficacy of transplanting scaffolds containing central nervous system vasculature to repair spinal cord injury. There are three major phases of this effort: development of a three-dimensional model of central nervous system vasculature, transplantation of a pre-vascularized scaffold and optimization of the biomaterial used to deliver vasculature to the injured spinal cord. This research has produced the first ever compliant, three-dimensional (3D) blood-brain barrier (BBB) vessel. In order to create vascularized scaffolds appropriate for transplantation into a rat model of spinal cord injury, techniques to fabricate and spatially pattern capillary-scale vasculature that maintain the tight junction morphology characteristic of the BBB are described. Both in vitro experiments using neural precursor cells and in vivo studies using the rat model demonstrate that axons grow along the patterned microvasculature, which demonstrates the potential of harnessing neurovascular interaction as a novel strategy to regenerate the central nervous system. The third phase of the dissertation focuses on improving the biomaterial composition to enhance the infiltration of host axons into the scaffold. Specifically, the permissivity of a RADA-16I nanofiber peptide material is evaluated by measuring axon growth and levels of serotonin receptors within the scaffold. Taken together, this work advances the field of tissue engineering and regenerative medicine by demonstrating the potential of vascularized scaffolds to repair the damaged spinal cord

    Chronic inhibition of endoplasmic reticulum stress and inflammation prevents ischaemia-induced vascular pathology in type II diabetic mice

    Get PDF
    Endoplasmic reticulum (ER) stress and inflammation are important mechanisms that underlie many of the serious consequences of type II diabetes. However, the role of ER stress and inflammation in impaired ischaemia-induced neovascularization in type II diabetes is unknown. We studied ischaemia-induced neovascularization in the hind-limb of 4-week-old db - /db- mice and their controls treated with or without the ER stress inhibitor (tauroursodeoxycholic acid, TUDCA, 150 mg/kg per day) and interleukin-1 receptor antagonist (anakinra, 0.5 microg/mouse per day) for 4 weeks. Blood pressure was similar in all groups of mice. Blood glucose, insulin levels, and body weight were reduced in db - /db- mice treated with TUDCA. Increased cholesterol and reduced adiponectin in db - /db- mice were restored by TUDCA and anakinra treatment. ER stress and inflammation in the ischaemic hind-limb in db - /db- mice were attenuated by TUDCA and anakinra treatment. Ischaemia-induced neovascularization and blood flow recovery were significantly reduced in db - /db- mice compared to control. Interestingly, neovascularization and blood flow recovery were restored in db - /db- mice treated with TUDCA or anakinra compared to non-treated db - /db- mice. TUDCA and anakinra enhanced eNOS-cGMP, VEGFR2, and reduced ERK1/2 MAP-kinase signalling, while endothelial progenitor cell number was similar in all groups of mice. Our findings demonstrate that the inhibition of ER stress and inflammation prevents impaired ischaemia-induced neovascularization in type II diabetic mice. Thus, ER stress and inflammation could be potential targets for a novel therapeutic approach to prevent impaired ischaemia-induced vascular pathology in type II diabetes

    Ascospore release and survival in Sclerotinia sclerotiorum

    Get PDF
    The release and survival of ascospores of a UK Sclerotinia sclerotiorum isolate were studied. Apothecia placed in a spore clock apparatus with different lighting regimes at 15 °C released ascospores continuously with an increasing rate for the duration of experiments (72–84 h). Spore release was not confined to light or dark periods in alternating regimes and occurred in continuous dark or light. Ascospores were released in both saturated air (90–95% rh) and at 65–75% rh. High temperature and rh were detrimental to ascospore survival but spore viability was maintained for longer periods than previously reported. The significance of these results in relation to disease control is discussed

    Modular Equations and Distortion Functions

    Full text link
    Modular equations occur in number theory, but it is less known that such equations also occur in the study of deformation properties of quasiconformal mappings. The authors study two important plane quasiconformal distortion functions, obtaining monotonicity and convexity properties, and finding sharp bounds for them. Applications are provided that relate to the quasiconformal Schwarz Lemma and to Schottky's Theorem. These results also yield new bounds for singular values of complete elliptic integrals.Comment: 23 page
    • 

    corecore