247 research outputs found

    Serratia marcescens outbreak in a neonatal intensive care unit: crucial role of implementing hand hygiene among external consultants.

    Get PDF
    BACKGROUND: Serratia marcescens represents an important pathogen involved in hospital acquired infections. Outbreaks are frequently reported and are difficult to eradicate. The aim of this study is to describe an outbreak of Serratia marcescens occurred from May to November 2012 in a neonatal intensive care unit, to discuss the control measures adopted, addressing the role of molecular biology in routine investigations during the outbreak. METHODS: After an outbreak of Serratia marcescens involving 14 neonates, all admitted patients were screened for rectal and ocular carriage every two weeks. Extensive environmental sampling procedure and hand sampling of the staff were performed. Antimicrobial susceptibility pattern and molecular analysis of isolates were carried out. Effective hand hygiene measures involving all the external consultants has been implemented. Colonized and infected babies were cohorted. Dedicated staff was established to care for the colonized or infected babies. RESULTS: During the surveillance, 65 newborns were sampled obtaining 297 ocular and rectal swabs in five times. Thirty-four Serratia marcescens isolates were collected: 11 out of 34 strains were isolated from eyes, being the remaining 23 isolated from rectal swabs. Two patients presented symptomatic conjunctivitis. Environmental and hand sampling resulted negative. During the fifth sampling procedure no colonized or infected patients have been identified. Two different clones have been identified. CONCLUSIONS: Ocular and rectal colonization played an important role in spread of infections. Implementation of infection control measures, involving also external specialists, allowed to control a serious Serratia marcescens outbreak in a neonatal intensive care unit

    Compliance of clinical microbiology laboratories with recommendations for the diagnosis of bloodstream infections

    Get PDF
    In 2014, the Italian Working Group for Infections in Critically Ill Patient of the Italian Association of Clinical Microbiologists updated the recommendations for the diagnostic workflow for bloodstream infections (BSI). Two years after publication, a nationwide survey was conducted to assess the compliance with the updated recommendations by clinical microbiology laboratories. A total of 168 microbiologists from 168 laboratories, serving 204 acute care hospitals and postacute care facilities, were interviewed during the period January\u2013October 2016 using a questionnaire consisting of nineteen questions which assessed the level of adherence to various recommendations. The most critical issues were as follows: (a) The number of sets of blood cultures (BC) per 1,000 hospitalization days was acceptable in only 11% of laboratories; (b) the minority of laboratories (42%) was able to monitor whether BCs were over or under-inoculated; (c) among the laboratories monitoring BC contamination (80%), the rate of contaminated samples was acceptable in only 12% of cases;(d) the Gram-staining results were reported within 1 hr since BC positivity in less than 50% of laboratories. By contrast, most laboratories received vials within 2\u20134 hr from withdrawal (65%) and incubated vials as soon as they were received in the laboratory (95%). The study revealed that compliance with the recommendations is still partial. Further surveys will be needed to monitor the situation in the future

    The methylome of the hypothalamus of prepubertal and pubertal goats

    Get PDF
    Puberty is the fulfillment of fertility, a process involving physiological and morphological development. It is well known that the increased hypothalamic secretion of the gonadotropin-releasing hormone (GnRH) is essential for the activation of this process, even if the elements coordinating the timing of puberty have not been fully identified1,2. Recent studies provide proof that there is an epigenetic regulation of female puberty, and DNA methylation, the most studied epigenetic modification, plays a major role in it3. We analyzed DNA methylation patterns of 5 Alpine goats at their prepubertal stage and 5 that reached puberty in order to highlight differences in their methylome. Detection of methylated regions across the goat genome involved a Methyl Binding Domain (MBD) enrichment followed by deep sequencing (Hiseq2000 Illumina). The software ChIPseeqer4 permitted the identification of peaks corresponding to hyper-methylated regions. We have observed a higher methylation level in prepubertal goats. The distribution of the methylation peaks across the genome and within CpG islands per chromosome per group of animals has been analyzed. Furthermore, we have investigated differential methylation in genes associated with puberty. Specifically, Cbx7, coding for a core component of the Polycomb group silencing complex, and GnRHR, the gene coding for GnRH receptor, showed a higher number of peaks into two intragenic fragments within prepubertal goats. These results, accompanied by transcriptome analysis, provide a foundation for elucidating the role of DNA methylation in the complex mechanisms that drive puberty in goat species

    A first glance on the epigenome of Capra hircus

    Get PDF
    DNA methylation and microRNAs (miRNA) are two important forms of epigenetic modifications that play an important role in gene regulation in animals. Methylation at the carbon 5 position of cytosine residues is a fundamental layer of cellular differentiation through the control of transcriptional potential. MiRNA are small noncoding RNA molecules that regulate gene expression. Complete DNA methylomes for several organisms are now available; at the present, methylome of the domestic goat is unexplored. There is also still limited knowledge about miRNAs expression profiles in small ruminant species. Therefore, to contribute information on epigenetic modification in Capra hircus, we analysed the methylome and the miRNA population of three tissues (hypothalamus, pituitary and ovary) from 3 adult Saanen goats. We used Methylated DNA binding domain sequencing with enrichment of methylated DNA fragments and next generation sequencing. We produced least 23 million reads per sample, which were aligned to the goat reference genome. Further analyses were performed to identify peaks corresponding to hyper-methylated regions. We sequenced miRNAs expressed in the three tissues with Illumina high-throughput sequencing. Reads were mapped on the Capra hircus reference genome and both known and novel miRNAs, and miRNA target sites were identified using information collected in miRBase and using specific bioinformatic tools. This study produced a comprehensive miRNA profile related to the biology of goat. Furthermore, this is the first work dealing with methylome in Capra hircus: our preliminary results could provide new information for a deeper comprehension of epigenetic mechanisms of this species

    De novo unbalanced translocations have a complex history/aetiology

    Get PDF
    We investigated 52 cases of de novo unbalanced translocations, consisting in a terminally deleted or inverted-duplicated deleted (inv-dup del) 46th chromosome to which the distal portion of another chromosome or its opposite end was transposed. Array CGH, whole-genome sequencing, qPCR, FISH, and trio genotyping were applied. A biparental origin of the deletion and duplication was detected in 6 cases, whereas in 46, both imbalances have the same parental origin. Moreover, the duplicated region was of maternal origin in more than half of the cases, with 25% of them showing two maternal and one paternal haplotype. In all these cases, maternal age was increased. These findings indicate that the primary driver for the occurrence of the de novo unbalanced translocations is a maternal meiotic non-disjunction, followed by partial trisomy rescue of the supernumerary chromosome present in the trisomic zygote. In contrast, asymmetric breakage of a dicentric chromosome, originated either at the meiosis or postzygotically, in which the two resulting chromosomes, one being deleted and the other one inv-dup del, are repaired by telomere capture, appears at the basis of all inv-dup del translocations. Notably, this mechanism also fits with the origin of some simple translocations in which the duplicated region was of paternal origin. In all cases, the signature at the translocation junctions was that of non-homologous end joining (NHEJ) rather than non-allelic homologous recombination (NAHR). Our data imply that there is no risk of recurrence in the following pregnancies for any of the de novo unbalanced translocations we discuss here

    The DNA Methylation Pattern of Prepubertal and Pubertal Alpine Goats

    Get PDF
    Puberty timing is controlled by many genes and the elements coordinating this process have not completely been identified. Hypothalamus is a pivotal organ in the control of sexual maturation. There is evidence that epigenetic modifications, such as DNA methylation, play a key role in the process. The methylome of the hypothalamus of 10 Alpine goats, 5 at a prepubertal stage (93\ub18 days old) and 5 at their pubertal stage (230\ub117 days old) was analysed to investigate the differences at the DNA methylation level behind these physiological changes. In order to evaluate differentially methylated regions, Methylated DNA Binding Domain sequencing (MBD-seq) with enrichment of methylated DNA fragments and next generation sequencing (Hiseq2000 Illumina) were performed. An average of 24,13 million of reads (range 18.00 and 30.11 million of reads) were produced per sample and peaks corresponding to hyper-methylated regions were estimated using the software ChIPseeqer. The analysis showed that there was an increase in methylation before puberty.The extent of methylation had a median value (\ub1IQR) of 12.32\ub110.21 Mbp of the genome for prepubertal goats, compared with 8.18\ub19.71 Mbp for pubertal goats. Significantly increased methylation was seen on 11 chromosomes in prepubertal goats. Among these, chromosomes 4 and 7 were the most highly significant differentially methylated. In showing that female puberty in goats is associated with amodification of the DNA methylation pattern in the hypothalamus, these results add information on the complex mechanisms that control puberty in mammals

    Genome-wide analysis of DNA methylation in hypothalamus and ovary of Capra hircus

    Get PDF
    BACKGROUND: DNA methylation is a frequently studied epigenetic modification due to its role in regulating gene expression and hence in biological processes and in determining phenotypic plasticity in organisms. Rudimentary DNA methylation patterns for some livestock species are publically available: among these, goat methylome deserves to be further explored. RESULTS: Genome-wide DNA methylation maps of the hypothalamus and ovary from Saanen goats were generated using Methyl-CpG binding domain protein sequencing (MBD-seq). Analysis of DNA methylation patterns indicate that the majority of methylation peaks found within genes are located gene body regions, for both organs. Analysis of the distribution of methylated sites per chromosome showed that chromosome X had the lowest number of methylation peaks. The X chromosome has one of the highest percentages of methylated CpG islands in both organs, and approximately 50% of the CpG islands in the goat epigenome are methylated in hypothalamus and ovary. Organ-specific Differentially Methylated Genes (DMGs) were correlated with the expression levels. CONCLUSIONS: The comparison between transcriptome and methylome in hypothalamus and ovary showed that a higher level of methylation is not accompanied by a higher gene suppression. The genome-wide DNA methylation map for two goat organs produced here is a valuable starting point for studying the involvement of epigenetic modifications in regulating goat reproduction performance
    • …
    corecore