4,709 research outputs found

    How to fill a narrow 27 KM long tube with a huge number of accelerator components?

    Get PDF
    As in large scale industrial projects, research projects, such as giant and complex particle accelerators, require intensive spatial integration studies using 3D CAD models, from the design to the installation phases. The future management of the LHC machine configuration during its operation will rely on the quality of the information, produced during these studies. This paper presents the powerful data-processing tools used in the project to ensure the spatial integration of several thousand different components in the limited space available. It describes how the documentation and information generated have been made available to a great number of users through a dedicated Web site and how installation nonconformities were handled

    Lower Semi-frames, Frames, and Metric Operators

    Get PDF
    This paper deals with the possibility of transforming a weakly measurable function in a Hilbert space into a continuous frame by a metric operator, i.e., a strictly positive self-adjoint operator. A necessary condition is that the domain of the analysis operator associated with the function be dense. The study is done also with the help of the generalized frame operator associated with a weakly measurable function, which has better properties than the usual frame operator. A special attention is given to lower semi-frames: indeed, if the domain of the analysis operator is dense, then a lower semi-frame can be transformed into a Parseval frame with a (special) metric operator

    Bound on the multiplicity of almost complete intersections

    Full text link
    Let RR be a polynomial ring over a field of characteristic zero and let IRI \subset R be a graded ideal of height NN which is minimally generated by N+1N+1 homogeneous polynomials. If I=(f1,...,fN+1)I=(f_1,...,f_{N+1}) where fif_i has degree did_i and (f1,...,fN)(f_1,...,f_N) has height NN, then the multiplicity of R/IR/I is bounded above by i=1Ndimax{1,i=1N(di1)(dN+11)}\prod_{i=1}^N d_i - \max\{1, \sum_{i=1}^N (d_i-1) - (d_{N+1}-1) \}.Comment: 7 pages; to appear in Communications in Algebr

    High-order density-matrix perturbation theory

    Full text link
    We present a simple formalism for the calculation of the derivatives of the electronic density matrix at any order, within density functional theory. Our approach, contrary to previous ones, is not based on the perturbative expansion of the Kohn-Sham wavefunctions. It has the following advantages: (i) it allows a simple derivation for the expression for the high order derivatives of the density matrix; (ii) in extended insulators, the treatment of uniform-electric-field perturbations and of the polarization derivatives is straightforward.Comment: 4 page

    Serre's "formule de masse" in prime degree

    Full text link
    For a local field F with finite residue field of characteristic p, we describe completely the structure of the filtered F_p[G]-module K^*/K^*p in characteristic 0 and $K^+/\wp(K^+) in characteristic p, where K=F(\root{p-1}\of F^*) and G=\Gal(K|F). As an application, we give an elementary proof of Serre's mass formula in degree p. We also determine the compositum C of all degree p separable extensions with solvable galoisian closure over an arbitrary base field, and show that C is K(\root p\of K^*) or K(\wp^{-1}(K)) respectively, in the case of the local field F. Our method allows us to compute the contribution of each character G\to\F_p^* to the degree p mass formula, and, for any given group \Gamma, the contribution of those degree p separable extensions of F whose galoisian closure has group \Gamma.Comment: 36 pages; most of the new material has been moved to the new Section

    Simulation of electron energy loss spectra with the turboEELS and thermo-pw codes

    Get PDF
    For some materials like noble metals, electron energy loss spectra have a complex structure that makes them difficult to analyze without the help of ab initio calculations. Various theoretical approaches can be used for this purpose, among which the time-dependent density functional perturbation theory (TDDFPT) which has been widely used to study plasmons in a number of bulk and surface systems. In the present paper we present a comparison of the results and performance of two different numerical implementations of TDDFPT: the Sternheimer and Liouville-Lanczos methods. The former approach is implemented in the thermo-pw module and the latter one in the turboEELS code of the QUANTUM ESPRESSO package for electronic structure calculations. In the present paper a comparison is made for bulk bismuth, a semimetal, taking into account spin-orbit coupling, as well as for bulk gold, a noble metal. We show that for these two examples, both codes gives identical results and the turboEELS code has a better performance than the thermo-pw code, and point out in which cases the usage of thermo-pw alone or of both codes can be advantageous

    Geographical distribution of e-cadherin germline mutations in the context of diffuse gastric cancer: A systematic review

    Get PDF
    Hereditary diffuse gastric cancer (HDGC) is a complex and multifactorial inherited cancer predisposition syndrome caused by CDH1 germline mutations. Nevertheless, current CDH1 genetic screening recommendations disregard an unbalanced worldwide distribution of CDH1 variants, impacting testing efficacy and patient management. In this systematic review, we collected and analyzed all studies describing CDH1 variants in gastric cancer patients originating from both highand low-prevalence countries. Selected studies were categorized as family study, series study, and unknown study, according to the implementation of HDGC clinical criteria for genetic testing. Our results indicate that CDH1 mutations are more frequently identified in gastric cancer low-incidence countries, and in the family study group that encompasses cases fulfilling criteria. Considering the type of CDH1 alterations, we verified that the relative frequency of mutation types varies within study groups and geographical areas. In the series study, the missense variant frequency is higher in high-incidence areas of gastric cancer, when compared with non-missense mutations. However, application of variant scoring for putative relevance led to a strong reduction of CDH1 variants conferring increased risk of gastric cancer. Herein, we demonstrate that criteria for CDH1 genetic screening are critical for identification of individuals carrying mutations with clinical significance. Further, we propose that future guidelines for testing should consider GC incidence across geographical regions for improved surveillance programs and early diagnosis of disease.This manuscript was supported by the Italian Ministry of Health (Project Code GR‐2016‐ 02361655) and was partially supported by the Ricerca Corrente and 5 × 1000 funds, and financed by FEDER funds through the Operational Programme for Competitiveness Factors (COMPETE 2020), Programa Operacional de Competitividade e Internacionalização (POCI) and Programa Operacional Regional do Norte (Norte 2020); and by the Portuguese Foundation for Science and Technology (FCT projects PTDC/MED‐GEN/30356/2017 and PTDC/BIM‐ONC/0281/2014). We acknowledge the American Association of Patients with Hereditary Gastric Cancer “No Stomach for Cancer” for funding Figueiredo’s research
    corecore