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Abstract.
For some materials like noble metals, electron energy loss spectra have a complex structure

that makes them difficult to analyze without the help of ab initio calculations. Various
theoretical approaches can be used for this purpose, among which the time-dependent density
functional perturbation theory (TDDFPT) which has been widely used to study plasmons in a
number of bulk and surface systems. In the present paper we present a comparison of the results
and performance of two different numerical implementations of TDDFPT: the Sternheimer and
Liouville-Lanczos methods. The former approach is implemented in the thermo pw module
and the latter one in the turboEELS code of the Quantum ESPRESSO package for electronic
structure calculations. In the present paper a comparison is made for bulk bismuth, a semimetal,
taking into account spin-orbit coupling, as well as for bulk gold, a noble metal. We show that
for these two examples, both codes gives identical results and the turboEELS code has a better
performance than the thermo pw code, and point out in which cases the usage of thermo pw
alone or of both codes can be advantageous.

1. Introduction
Electron energy loss (EEL) spectroscopy [1] is a powerful experimental method that allows one
to measure the change in kinetic energy -the energy loss- of electrons after their interaction with
a sample. This technique can be used to obtain structural and chemical information about a
specimen -from the high-energy loss region of the spectra- as well as information about valence
electron excitations -from the low-energy loss region of the spectra-. In particular, the valence
region of the spectra contains information about the band structure and dielectric properties
of the material: plasmons, surface plasmons and interband transitions. For some materials
like aluminum, valence EEL spectra has a simple structure containing one single, well-defined,
plasmon peak for which the Drude model is a pertinent approximation. In materials where
the behavior of valence electron is far from the (quasi) free electron model however, the EEL
spectrum contains many peaks from single, to collective and to superposition of collective and
single excitations, that make it difficult to analyze.

In order to perform a thorough analysis it is convenient to simulate EEL spectra computing
the dielectric function. Indeed, in an EEL spectroscopy experiment, the inelastic scattering

http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


XXIXth IUPAP Conference on Computational Physics CCP2017

IOP Conf. Series: Journal of Physics: Conf. Series 1136 (2018) 012008

IOP Publishing

doi:10.1088/1742-6596/1136/1/012008

2

probability of an incoming electron by the electrons of the solid, given by the double-differential
cross-section d2σ/(dωdΩ) is measured, which is linked to the macroscopic dielectric function εM :

d2σ

dωdΩ
∼ Im[

1
εM (Q, ω)

], (1)

where Q is a momentum transfer, ω is an electron energy loss, and dΩ is the elemental solid-angle
in which the scattering occurs.

Various ab initio methods that allow one to calculate spectral properties of solids have been
developed in the past decades, addressing different aspects of the problem [2]. Time-dependent
density functional theory (TDDFT) has been widely used to study plasmons in a number of
bulk and surface systems [3, 4]. We note however that even for a material as simple as covalent
silicon, one might need to account for many-body (excitonic) effects beyond TDDFT for instance
to properly describe the shape of the plasmon peak [5].

In the present paper we will focus on the time-dependent density functional perturbation
theory (TDDFPT) and linear response approach [6, 7] to the calculation of the dielectric
function. Two implementations, the Sternheimer and Liouville-Lanczos methods, will be
compared for bulk bismuth and gold. The paper is organized as follows. In Sec. 2, a
brief overview and comparison of the theoretical methods: classic TDDFT approach, and the
Liouville-Lanczos and Sternheimer approaches to TDDFPT, will be given. In Sec. 3, results
obtained using different approaches and corresponding implementations will be shown along
with the comparison of the performance of the codes. Finally, conclusions will be drawn in
Sec. 4.

2. Comparison of theoretical approaches to linear response calculations
2.1. Dyson-like equation
The dielectric function in eq. (1) is determined by the macroscopic density response function
(or susceptibility) χM [8]:

εM (Q, ω)−1 = 1 + vG(Q)χM (Q, ω), (2)

where vG(Q) = 4πe2/|Q|2 is the Fourier transform of the Coulomb potential. χM is related to
the microscopic density response function χG,G(q, ω):

χM (Q, ω) = χG,G(q, ω), (3)

where Q = q + G, with G being a reciprocal lattice vector and q a wavevector in the first
Brillouin zone. Within the traditional linear response approach of TDDFT, χ of the interacting
many-body system is related to the density response function χ0 of the non-interacting Kohn-
Sham (KS) system through a Dyson-like screening equation:

χ = χ0 + (v + fxc)χ. (4)

fxc is the exchange-correlation kernel and χ0 is given by

χ0
G,G′(q, ω) =

1
V

BZ∑
k

∑
n,n′

fn,k − fn′,k+q

~ω + ε0n,k − ε0n′,k+q + iη
〈ϕ0

n,k|e−i(q+G)r|ϕ0
n′,k+q〉〈ϕ0

n′,k+q|ei(q+G)r|ϕ0
n,k〉,

(5)
where ϕ0

n,k, ε
0
n,k, fn,k are respectively the unperturbed single-particle wavefunctions, their

eigenvalues and occupation numbers, V is the volume of the unit-cell and n, n′ are indices
that span all of the occupied and unoccupied bands. The accurate calculation of χ in a wide
frequency range using eq. (4) and (5) will require a separate calculation for each value of the
frequency and knowledge of all of the empty states up to the requested energy, which makes this
task cumbersome.
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2.2. Sternheimer equations
On the other hand, the density response-function can be defined through the first-order
correction to the density n(r, t) = n0(r) + n′(r, t) of the system under a weak external
perturbation Vext(r, t) = V 0

ext(r) + V ′ext(r, t):

n′(r, t) =
∫ ∞
−∞

dt′
∫
dr′χ(r, r′, t− t′)V ′ext(r′, t′). (6)

In the case of EEL spectroscopy, the external perturbation is V ′ext(r′, t′) ∼ ei(q·r−ωt). One
can perform a direct calculation of the χ using density functional perturbation theory (DFPT)
techniques without explicit calculation of empty states [9] and without solving the Dyson-like
equation (4). In this framework a system under external perturbation can be described by the
TDDFPT KS equation:

i~
∂ϕn,k(r, t)

∂t
= ĤKS(r, t)ϕn,k(r, t), (7)

where ϕn,k(r, t) = ϕ0
n,k(r) +ϕ

′
n,k(r, t) is the KS wavefunction decomposed into the unperturbed

KS wave and its first-order variation. ĤKS(r, t) = Ĥ0(r)+V ′(r, t) is the KS Hamiltonian which
consists in the static unperturbed Hamiltonian Ĥ0(r) and of the (linearized) perturbation part
V ′(r, t). This equation and its complex-conjugate can be linearized and, taking into account
only the first-order response, yield the so-called Sternheimer equation [9] which, in the frequency
domain, reads:

(Ĥ0 − ε0n,k − ~ω)ϕ
′
n,k(r, ω) + P̂cV

′
Hxc(r, ω)ϕ0

n,k(r) = −P̂cV
′
ext(r, ω)ϕ0

n,k(r), (8)

(Ĥ0 − ε0n,−k + ~ω)ϕ
′∗
n,−k(r,−ω) + P̂cV

′∗
Hxc(r,−ω)ϕ0

n,k(r) = −P̂cV
′∗
ext(r,−ω)ϕ0

n,k(r), (9)

where P̂c is a projector on empty states and the first order correction to the density n′(r, t)
reads:

n′(r, t) =
BZ∑
k

∑
n

ϕ0∗
n,k(r)

[
ϕ

′∗
n,−k(r,−ω) + ϕ

′
n,k(r, ω)

]
(10)

where n now only spans the occupied bands. For metals, partially occupied bands should be
accounted for using the smearing approach [10, 11]. However, for the sake of simplicity it is
ommited in the present work, and only the insulating case is considered. This set of equations
can be solved self-consistently for each value of ω, allowing us to obtain the susceptibility χ of
the system.

2.3. The Liouville-Lanczos equation
Equivalently, instead of eq. (7), one can use the quantum Liouville equation [12, 13, 14]:

i~
dρ̂(t)
dt

=
[
ĤKS(t), ρ̂(t)

]
, (11)

where ρ̂(t) is the reduced one-electron KS density-matrix whose kernel reads:

ρ(r, r′, t) =
∑

ϕv(r, t)ϕ∗v(r′, t), (12)

and n(r, t) = ρ(r, r, t). Equation (11) can be linearized in the same manner as eq. (7), leading
to the linearized Liouvillian equation:

(~ω − L̂) · ˆ̄ρ′(ω) =
[
Ṽ ′ext(ω), ρ̂0

]
. (13)
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The action of the Liouvillian superoperator L̂ onto ρ̂ is defined as:

L̂ · ρ̂′ =
[
Ĥ0, ρ̂′

]
+
[
V ′Hxc[ρ̂

′], ρ̂0
]
. (14)

Equation (13) can be solved using the Lanczos recursive scheme for all of the frequencies at
once, resulting in the susceptibility χ.

2.4. Comparison of the methods
Each of three methods briefly described in Sec. 2.1 to 2.3 allows us to perform a first-principle
calculation of the linear density response function χ(q, ω) and, thus, to obtain the dielectric and
loss function of a given system, that can be directly compared to the experimental measurements
(see eq. (1)). Each method has advantages and drawbacks, the understanding of which is
necessary to choose the approach the most adapted to the target-problem.

Calculation of χ using a Dyson-like equation [15] is a powerful method that allows one to
access and analyze individual electronic excitations in the material. However, this information
comes for a relatively high cost: computation of χ0 in eq. (5) requires the computation of
corresponding empty states, and computation of χ in eq. (4) involves multiplication and inversion
of large matrices, making this calculations demanding in terms of central processing unit (CPU)
time and random access memory (RAM).

On the contrary, usage of DFPT techniques [9] in the Sternheimer approach allows one to
avoid the computation of the (numerous) empty states, by introducing the projector on the
empty states P̂c in eq. (8) and (9). This reduces the RAM and CPU time usage. Nevertheless,
the CPU time usage will remain high for the calculation over a wide frequency range, as the self-
consistent solution of eq. (8) and (9) should be repeated for each value of the desired frequency.

The Lanczos recursion algorithm used to solve the linearized Liouvillian equation (13) allows
us to avoid the explicit computation of the susceptibility for each frequency value, separating
the calculation into two steps. The first step of the Lanczos recursion is time consuming.
It is used to generate a tridiagonal matrix of coefficients which is used in the second step
(post-processing) to calculate the frequency-dependent susceptibility χ. This scheme allows
one to reduce CPU time usage significantly. However, there are two main drawbacks of the
Liouville-Lanczos approach: firstly, it is possible to perform calculations only in the case of
an adiabatic exchange and correlation functional V ′Hxc in eq. (14). In the case where V ′Hxc
has an explicit frequency dependence, one will have to repeat the recursive procedure for each
desired value of the frequency, increasing the CPU time tremendously, therefore making this
procedure inefficient. Secondly, within both Liouville-Lanczos and Sternheimer approaches, it
is not possible to retrieve the information from which orbitals a specific peak in a spectrum
consists of, thus making an analysis for understanding the physical origins more demanding.

3. Comparison of the results and performance of two codes: turboEELS and
thermo pw
3.1. Computational details
Ground state properties have been calculated using the density functional theory (DFT) [16, 17]
in the plane wave and pseudopotential method within the local density approximation [18] for
bismuth and the generalized gradient approximation [19] for gold.

For bulk Bi, a 2-atom trigonal unit-cell was used, with a plane wave basis set limited with
a cutoff energy of 60 Ry. A Monkhorst-Pack grid of 143 k-points has been used to sample the
Brillouin zone [20]. For the calculation of EEL spectra, a small transferred momentum of q =
0.013Å−1 in the (111) trigonal direction was chosen. An imaginary frequency was introduced, so
that ~ω in eq. (8) and (9) reads ~ω + iη, with η = 0.135eV . Indeed, the Sternheimer equations
are solved with this broadening. At variance, in the Liouville-Lanczos method the broadening is



XXIXth IUPAP Conference on Computational Physics CCP2017

IOP Conf. Series: Journal of Physics: Conf. Series 1136 (2018) 012008

IOP Publishing

doi:10.1088/1742-6596/1136/1/012008

5

used only in the post-processing step, when the χ response function is built from the recursion
coefficients. Calculations were performed using both scalar-relativistic - no spin-orbit coupling
(SOC) and full-relativistic - with SOC normconserving pseudopotentials [21]. The number of
iterations in the Lanczos recursion was 8000.

For bulk Au a 1-atom face-centered cubic unit-cell was used, with a plane wave basis set
limited with a cutoff energy of 60 Ry. A Monkhorst-Pack grid of 323 k-points has been used to
sample the Brillouin zone. For the calculation of EEL spectra, a small transferred momentum of
q = 0.039Å−1 was used and an imaginary frequency η = 0.135eV was added. Calculations were
performed using scalar relativistic (without SOC) normconserving pseudopotential [22]. The
number of iterations in the Lanczos recursion was 5000.

Convergence was carefully checked. In the thermo pw the procedure has an explicit
convergence threshold parameter on the variation of the density. This threshold was set to
10−12. In the Liouville-Lanczos approach, the recursion chain should be cut after a certain
number of iterations, meaning that convergence should be verified manually by performing
additional iterations.

Both Sternheimer (thermo pw code, unpublished [23]) and the Liouville-Lanczos (turboEELS
code [14]) approaches are implemented in the Quantum ESPRESSO package for
electronic structure calculations [24, 25]. Both codes support normconserving and ultrasolf
pseudopotentials. Several levels of MPI parallelization are implemented: a plane-wave
parallelization and a k-point parallelization.

3.2. Results
In figure 1, we report EEL spectra for bulk Bi obtained both with the thermo pw code, and with
turboEELS : results are in perfect agreement with each other and with previous calculations [3],
both with and without SOC. We point out that the TDDFPT calculations were performed with,
as input, data coming from the same (DFT) ground state self-consistent calculation.

Figure 2 shows the comparison of the EEL spectra for bulk Au obtained by thermo pw and
turboEELS codes.Obtained results are in agreement with previous ab initio calculations of the
EELS for Au [26]. In the figure 2 one can see a severely damped plasmon peak around 2.5 eV
and numerous interband transition at higher energies.

Figure 3 shows the relative difference between EEL spectra computed with the thermo pw
and turboEELS codes. Beyond 2 eV the agreement is perfect and the two codes agree within
1%. Below 2 eV, the loss function is tending to 0 and the magnitude of the relative difference
becomes higher as the loss function does not tend to 0 in the same way. Indeed, oscillations that
are intrinsic to the Lanczos, approach are magnified in the difference at low energy. As in the
case for Bi, agreement is perfect, that indicates that both codes are well-suited to handle either
semimetallic or metallic materials.
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Figure 1: Bulk Bi. Loss function for a
transferred momentum q = 0.013Å−1 in
the z-direction obtained using: turboEELS
code without (——) and with —— spin-orbit
coupling (SOC), and thermo pw code without
( ◦ ) and with ( ◦ ) SOC.
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Figure 2: Bulk Au. Loss function for a
vanishing transferred momentum is the x-
direction, calculated with the turboEELS code
(——) and thermo pw code (- - - -). Shaded
area marks the energy region where our
pseudopotential is less accurate and arrows
indicate the position of bulk plasmon and the
region on interband transitions.
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Figure 3: Bulk Au. Relative difference between the loss functions computed for a vanishing
transferred momentum is the x-direction, calculated with the turboEELS and thermo pw codes.

3.3. Performance
In figure 4, we show the comparison of the performance of both codes in terms of CPU time for
bulk Bi without SOC. One can see that the turboEELS code is more efficient than the thermo pw
code on a wide frequency range. We note that calculations in a low frequency region (0-10 eV)
are considerably faster, by a factor of 2-3, than in the middle and high frequency region (10-30
eV).
In table 1, we show the amount of time, number of CPU cores and number of frequencies used
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Figure 4: Bulk Bi. Performance comparison of turboEELS and thermo pw codes without spin-
orbit coupling. Loss functions obtained with turboEELS (——) and thermo pw (◦ ) codes
are shown (left-hand side abscissa). Time required for turboEELS (- - - -) to compute the
whole spectrum and for thermo pw ( ) to compute the loss function for five frequencies in the
corresponding frequency range is shown (right-hand side abscissa).

to obtain curves in fig. 2 and 4. In the last column of table 1, the number of frequency is given,
showing on average how many frequencies can be calculated with thermo pw when consuming
the same amount of CPU time needed for turboEELS to calculate the whole spectra. We point
out that the ratio may however depend on the selected frequency range.

Performance comparison for the calculation with SOC is not shown in the present work.
Taking SOC into account roughly increases the required CPU time by a factor of 4 for both
codes, without influencing their relative performance.

Table 1: Performance comparison of the turboEELS and thermo pw codes for bulk Bi and Au.

System # of CPU cores # of frequencies (ω) Time (h) average # of ω for thermo pw to
match turboEELS CPU time

Bi turboEELS 72 any 10
Bi thermo pw 72 130 118 11
Au turboEELS 240 any 0.75
Au thermo pw 240 600 16 28

4. Conclusions
In this work we have done a comparison between results and performance of the codes and
corresponding methods that allow us to calculate EEL spectra. It has been found that results
obtained using the Sternheimer equation and the Liouville-Lanczos approach are in perfect
agreement with each other for semiconducting (not shown), semimetallic and metallic samples.
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However, as anticipated in Sec. 2.4, the performance of the turboEELS code is significantly
better when the range of frequencies is wide. In principle it is possible to calculate EEL spectra
on a 0-250 eV range at the same computational cost as on the 0-25 eV interval, although it might
be necessary to include core electrons in the pseudopotential in order to describe high-energy
excitations correctly. One can see that it is convenient to use the thermo pw code for a precise
calculation of the susceptibility in a narrow frequency range.
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