52 research outputs found

    Pressure Evolution of Magnetism in URhGa

    Full text link
    In this paper, we report the results of an ambient and high pressure study of a 5f-electron ferromagnet URhGa. The work is focused on measurements of magnetic and thermodynamic properties of a single crystal sample and on the construction of the p-T phase diagram. Diamond anvil cells were employed to measure the magnetization and electrical resistivity pressures up to ~ 9 GPa. At ambient pressure, URhGa exhibits collinear ferromagnetic ordering of uranium magnetic moments {\mu}U ~ 1.1 {\mu}B (at 2 K) aligned along the c-axis of the hexagonal crystal structure below the Curie temperature TC = 41K. With the application of pressure up to 5GPa the ordering temperature TC initially increases whereas the saturated moment slightly decreases. The rather unexpected evolution is put in the context of the UTX family of compounds.Comment: arXiv admin note: text overlap with arXiv:1611.0327

    Bonding trends within ternary Isocoordinate chalcogenide glasses GeAsSe

    Full text link
    A structural study is presented of ab-initio molecular dynamics simulations of Ge-As-Se calcogenide glasses performed at the same mean coordination number but differing stoichiometry ranging between Se rich and Se poor glasses. Starting configurations are generated via Reverse Monte Carlo (RMC) simulations of Extended X-ray Absorption Fine Structure (EXAFS) measurements of experimental samples. Structural analysis is presented illustrating the bonding trends found with changing stoichiometry.Comment: 26 pages, 9 figures. Submitted to Physical Review

    Chiminey: Reliable Computing and Data Management Platform in the Cloud

    Full text link
    The enabling of scientific experiments that are embarrassingly parallel, long running and data-intensive into a cloud-based execution environment is a desirable, though complex undertaking for many researchers. The management of such virtual environments is cumbersome and not necessarily within the core skill set for scientists and engineers. We present here Chiminey, a software platform that enables researchers to (i) run applications on both traditional high-performance computing and cloud-based computing infrastructures, (ii) handle failure during execution, (iii) curate and visualise execution outputs, (iv) share such data with collaborators or the public, and (v) search for publicly available data.Comment: Preprint, ICSE 201

    Anisotropic Enhancement of Lower Critical Field in Ultraclean Crystals of Spin-Triplet Superconductor UTe2

    Full text link
    The paramagnetic spin-triplet superconductor UTe2_2 has attracted significant attention because of its exotic superconducting properties including an extremely high upper critical field and possible chiral superconducting states. Recently, ultraclean single crystals of UTe2_2 have become available, and thus measurements on these crystals are crucial to elucidate the intrinsic superconducting properties. Here, we report the thermodynamic critical field HcH_{\rm c}, the lower critical field Hc1H_{\rm c1}, and the upper critical field Hc2H_{\rm c2} at low fields of these high-quality single crystals. From the comparison of the anisotropies in Hc1H_{\rm c1} and Hc2H_{\rm c2}, we find that the experimental Hc1H_{\rm c1} values with the magnetic field along bb- and cc-axes are anomalously enhanced, showing unusual low-temperature upturns. We propose an effect of the strong Ising-like ferromagnetic fluctuations on the vortex line energy as the origin of the anisotropic enhancement of Hc1H_{\rm c1}.Comment: 7 pages, 6 figure

    Anomalous vortex dynamics in spin-triplet superconductor UTe2_2

    Full text link
    The vortex dynamics in the spin-triplet superconductor, UTe2_2, are studied by measuring the DC electrical resistivity with currents along the aa-axis under magnetic fields along the bb-axis. Surprisingly, we have discovered an island region of low critical current deep inside the superconducting (SC) state, well below the SC upper critical field, attributed to a weakening of vortex pinning. Notably, this region coincides with the recently proposed intermediate-field SC state. We discuss the possibility of nonsingular vortices in the intermediate state, where SC order parameter does not vanish entirely in the vortex cores due to the mixing of multiple SC components

    Pressure-induced huge increase of Curie temperature of the van der Waals ferromagnet VI3

    Full text link
    Evolution of magnetism in single crystals of the van der Waals compound VI3 in external pressure up to 7.3 GPa studied by measuring magnetization and ac magnetic susceptibility is reported. Four magnetic phase transitions, at T1 = 54.5 K, T2 = 53 K, TC = 49.5 K, and TFM = 26 K, respectively have been observed at ambient pressure. The first two have been attributed to the onset of ferromagnetism in specific crystal-surface layers. The bulk ferromagnetism is characterized by the magnetic ordering transition at Curie temperature TC and the transition between two different ferromagnetic phases TFM, accompanied by a structure transition from monoclinic to triclinic symmetry upon cooling. The pressure effects on magnetic parameters were studied with three independent techniques. TC was found to be almost unaffected by pressures up to 0.6 GPa whereas TFM increases rapidly with increasing pressure and reaches TC at a triple point at ~ 0.85 GPa. At higher pressures, only one magnetic phase transition is observed moving to higher temperatures with increasing pressure to reach 99 K at 7.3 GPa. In contrast, the low-temperature bulk magnetization is dramatically reduced by applying pressure (by more than 50% at 2.5 GPa) suggesting a possible pressure-induced reduction of vanadium magnetic moment. We discussed these results in light of recent theoretical studies to analyze exchange interactions and provide how to increase the Curie temperature of VI3.Comment: 20 pages, 16 figure

    Investigation of bonding within ab initio models of GeAsSe glasses

    No full text
    A study is presented into the structural details of ab initio molecular dynamics simulations of GeAsSe chalcogenide glasses with ideal stoichiometry over a range of mean coordination numbers (MCN). The structural variability dependence upon initial start
    corecore