19,674 research outputs found

    Probing in-medium vector meson decays by double-differential di-electron spectra in heavy-ion collisions at SIS energies

    Full text link
    Within a transport code simulation for heavy-ion collisions at bombarding energies around 1 AGeV, we demonstrate that double-differential di-electron spectra with suitable kinematical cuts are useful to isolate (i) the ρ\rho meson peak even in case of strong broadening, and (ii) the in-medium ω\omega decay contribution. The expected in-medium modifications of the vector meson spectral densities can thus be probed in this energy range via the di-electron channel

    Non-disturbing quantum measurements

    Full text link
    We consider pairs of quantum observables (POVMs) and analyze the relation between the notions of non-disturbance, joint measurability and commutativity. We specify conditions under which these properties coincide or differ---depending for instance on the interplay between the number of outcomes and the Hilbert space dimension or on algebraic properties of the effect operators. We also show that (non-)disturbance is in general not a symmetric relation and that it can be decided and quantified by means of a semidefinite program.Comment: Minor corrections in v

    Violation of the equivalence principle from light scalar fields: from Dark Matter candidates to scalarized black holes

    Full text link
    Tensor-scalar theory is a wide class of alternative theory of gravitation that can be motivated by higher dimensional theories, by models of dark matter or dark ernergy. In the general case, the scalar field will couple non-universally to matter producing a violation of the equivalence principle. In this communication, we review a microscopic model of scalar/matter coupling and its observable consequences in terms of universality of free fall, of frequencies comparison and of redshifts tests. We then focus on two models: (i) a model of ultralight scalar dark matter and (ii) a model of scalarized black hole in our Galactic Center. For both these models, we present constraints using recent measurements: atomic clocks comparisons, universality of free fall measurements, measurement of the relativistic redshift with the short period star S0-2 orbiting the supermassive black hole in our Galactic Center.Comment: 8 pages, 1 figure, contribution to the 2019 Gravitation session of the 54th Rencontres de Morion

    Gardner's deformations of the N=2 supersymmetric a=4-KdV equation

    Get PDF
    We prove that P.Mathieu's Open problem on constructing Gardner's deformation for the N=2 supersymmetric a=4-Korteweg-de Vries equation has no supersymmetry invariant solutions, whenever it is assumed that they retract to Gardner's deformation of the scalar KdV equation under the component reduction. At the same time, we propose a two-step scheme for the recursive production of the integrals of motion for the N=2, a=4-SKdV. First, we find a new Gardner's deformation of the Kaup-Boussinesq equation, which is contained in the bosonic limit of the super-hierarchy. This yields the recurrence relation between the Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of the full N=2, a=4-SKdV hierarchy. Our method is applicable towards the solution of Gardner's deformation problems for other supersymmetric KdV-type systems.Comment: Extended version of the talks given by A.V.K. at 8th International conference `Symmetry in Nonlinear Mathematical Physics' (June 20-27, 2009, Kiev, Ukraine) and 9th International workshop `Supersymmetry and Quantum Symmetries' (July 29 - August 3, 2009, JINR, Dubna, Russia); 22 page

    Life at high Deborah number

    Full text link
    In many biological systems, microorganisms swim through complex polymeric fluids, and usually deform the medium at a rate faster than the inverse fluid relaxation time. We address the basic properties of such life at high Deborah number analytically by considering the small-amplitude swimming of a body in an arbitrary complex fluid. Using asymptotic analysis and differential geometry, we show that for a given swimming gait, the time-averaged leading-order swimming kinematics of the body can be expressed as an integral equation on the solution to a series of simpler Newtonian problems. We then use our results to demonstrate that Purcell's scallop theorem, which states that time-reversible body motion cannot be used for locomotion in a Newtonian fluid, breaks down in polymeric fluid environments

    Environmental dependence of AGN activity in the supercluster A901/2

    Full text link
    We present XMM data for the supercluster A901/2, at z ~ 0.17, which is combined with deep imaging and 17-band photometric redshifts (from the COMBO-17 survey), 2dF spectra and Spitzer 24um data, to identify AGN in the supercluster. The 90ksec XMM image contains 139 point sources, of which 11 are identified as supercluster AGN with L_X(0.5-7.5keV) > 1.7x10^41 erg/cm2/s. The host galaxies have M_R < -20 and only 2 of 8 sources with spectra could have been identified as AGN by the detected optical emission lines. Using a large sample of 795 supercluster galaxies we define control samples of massive galaxies with no detected AGN. The local environments of the AGN and control samples differ at >98 per cent significance. The AGN host galaxies lie predominantly in areas of moderate projected galaxy density and with more local blue galaxies than the control sample, with the exception of one very bright Type I AGN very near the centre of a cluster. These environments are similar to, but not limited to, cluster outskirts and blue groups. Despite the large number of potential host galaxies, no AGN are found in regions with the highest galaxy density (excluding some cluster cores where emission from the ICM obscures moderate luminosity AGN). AGN are also absent from the areas with lowest galaxy density. We conclude that the prevalence of cluster AGN is linked to their environment.Comment: 20 pages, 15 figures. MNRAS accepted. Version with full resolution figures, including Figure 14, is available at http://www.sc.eso.org/~rgilmour

    Hydraulische invloed van structurele ingrepen tegen de verzanding van het Zwin

    Get PDF
    The specific fauna and flora of the natural reserve "Het Zwin" are generated by the seawater that streams in and out of the channels of the reserve at each tide. This water transports sand and mud, that are deposited in the channels and on the inundated surfaces. This way the chanels and saltmarshes are silting up gradually.The international Belgian-Dutch Commission of the Zwin has decided to stop the silting up and to maintain the Zwin as a salty tidal area.In 1987 a technical committee was established to deliberate on the mesures that had to be taken. In 1989 the main channel was deepened and a sandtrap introduced.This article represents mainly the calculations on mathematical model by Flanders Hydraulics to estimate the influence of different proposed solutions.Alternative managements are examined concerning their effect on the ecological values, the landscape and the recreational values of the Zwin.The international Commission of the Zwin has approuved a project in phases, where alternatives are combined to maintain and fortify the natural values of the Zwin

    Higher-order Kerr terms allow ionization-free filamentation in gases

    Full text link
    We show that higher-order nonlinear indices (n4n_4, n6n_6, n8n_8, n10n_{10}) provide the main defocusing contribution to self-channeling of ultrashort laser pulses in air and Argon at 800 nm, in contrast with the previously accepted mechanism of filamentation where plasma was considered as the dominant defocusing process. Their consideration allows to reproduce experimentally observed intensities and plasma densities in self-guided filaments.Comment: 11 pages, 6 figures (11 panels
    corecore