8 research outputs found

    Multiscale InSAR Time Series (MInTS) analysis of surface deformation

    Get PDF
    We present a new approach to extracting spatially and temporally continuous ground deformation fields from interferometric synthetic aperture radar (InSAR) data. We focus on unwrapped interferograms from a single viewing geometry, estimating ground deformation along the line-of-sight. Our approach is based on a wavelet decomposition in space and a general parametrization in time. We refer to this approach as MInTS (Multiscale InSAR Time Series). The wavelet decomposition efficiently deals with commonly seen spatial covariances in repeat-pass InSAR measurements, since the coefficients of the wavelets are essentially spatially uncorrelated. Our time-dependent parametrization is capable of capturing both recognized and unrecognized processes, and is not arbitrarily tied to the times of the SAR acquisitions. We estimate deformation in the wavelet-domain, using a cross-validated, regularized least squares inversion. We include a model-resolution-based regularization, in order to more heavily damp the model during periods of sparse SAR acquisitions, compared to during times of dense acquisitions. To illustrate the application of MInTS, we consider a catalog of 92 ERS and Envisat interferograms, spanning 16 years, in the Long Valley caldera, CA, region. MInTS analysis captures the ground deformation with high spatial density over the Long Valley region

    How to Overcome Perceptual Aliasing in ASIFT?

    Get PDF
    International audienceSIFT is one of the most popular algorithms to extract points of interest from images. It is a scale+rotation invariant method. As a consequence, if one compares points of interest between two images subject to a large viewpoint change, then only a few, if any, common points will be retrieved. This may lead subsequent algorithms to failure, especially when considering structure and motion or object recognition problems. Reaching at least affine invariance is crucial for reliable point correspondences. Successful approaches have been recently proposed by several authors to strengthen scale+rotation invariance into affine invariance, using viewpoint simulation (e.g. the ASIFT algorithm). However, almost all resulting algorithms fail in presence of repeated patterns, which are common in man-made environments, because of the so-called perceptual aliasing. Focusing on ASIFT, we show how to overcome the perceptual aliasing problem. To the best of our knowledge, the resulting algorithm performs better than any existing generic point matching procedure

    Boruvka meets nearest neighbors

    No full text
    Computing the minimum spanning tree (MST) is a common task in the pattern recognition and the computer vision fields. However, little work has been done on efficient general methods for solving the problem on large datasets where graphs are complete and edge weights are given implicitly by a distance between vertex attributes. In this work we propose a generic algorithm that extends the classical Boruvka's algorithm by using nearest neighbors search structures to significantly reduce time and memory consumption. The algorithm can also compute in a straightforward way approximate MSTs thus further improving speed. Experiments show that the proposed method outperforms classical algorithms on large low-dimensional datasets by several orders of magnitude. © Springer-Verlag 2013.Fil:Tepper, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mejail, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    corecore