1,179 research outputs found

    Interrelationship between atomic species, bias voltage, texture and microstructure of nano-scale multilayers

    Get PDF
    A matrix of binary and ternary nitrides containing lighter elements (Al, Ti, V and Cr) with atomic mass 89 has been formulated. These have been grown as nano-scale multilayer coatings (bilayer thickness approx. 3.0 nm) on stainless steel substrates using an industrial size multiple-target ABS coater. When lighter elements are incorporated into the multilayer at a lower bias voltage (U-B = -75 V) pronounced {111} or {110}, textures develop which are determined by the dominating species present. A {111} or {110} texture develops when TiAlN or VN and or CrN dominates the matrix, respectively. In contrast when a heavier element is incorporated a {100} texture is observed. Additionally, there is a strong indication that in the case when heavy elements (>89) are involved in the growth process, which evolves by continuous re-nucleation. Conversely, when only light elements (<52) are involved then the coating evolves by competitive growth. This observation is limited only for the lower bias voltage range of U-B -75 to -120 V However, as the bias voltage is increased (up to U-B = -150 V) the texture becomes increasingly sharp and in all cases a {111} texture develops. A lower residual compressive stress (typically -1.8 GPa) is observed when one of the bi-layers is dominated by a heavier element. The stress increases (up to -6.8 GPa) in these coatings when the bias voltage is increased to U-B = -150 V which is always systematically lower than in coatings containing only lighter elements which are typically up to -11.7 GPa at the same bias voltage. In parallel this results in an increase in plastic hardness (80 GPa) and in the sliding wear coefficient by an order of magnitude regardless of the type of lattice growth observed

    A Long Term Test of Seed Longevity

    Get PDF

    Meiotic DSB patterning: A multifaceted process

    Get PDF
    Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control—spatial regulation—detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed

    The effect of (Ti + Al): V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings

    Get PDF
    Nano-scaled multilayered TiAlN/VN coatings have been grown on stainless steel and M2 high speed steel substrates at U-B = - 85 V in an industrial, four target, Hauzer HTC 1000 coater using combined cathodic steered arc etching/unbalanced magnetron sputtering. X-ray diffraction (XRD) has been used to investigate the effects of process parameters (Target Power) on texture evolution (using texture parameter T*), development of residual stress (sin(2) psi method) and nano-scale multilayer period. The composition of the coating was determined using energy dispersive X-ray analysis. The thermal behaviour of the coatings in air was studied using thermo-gravimetric analysis, XRD and scanning electron microscopy. The bi-layer period varied between 2.8 and 3.1 nm and in all cases a {1 1 0} texture developed with a maximum value T* = 4.9. The residual stress varied between -5.2 and -7.4 GPa. The onset of rapid oxidation occurred between 628 and 645 degreesC depending on the (Ti+Al):V ratio. After oxidation in air at 550 degreesC AlVO4, TiO2 and V2O5 Phases were identified by XRD with the AlVO4, TiO2 being the major phases. The formation of AlVO4 appears to disrupt the formation of Al2O3 which imparts oxidation resistance to TiAlN based coatings. Increasing the temperature to 600 and 640 degreesC led to a dramatic increase in the formation of V2O5 which was highly oriented (0 0 1) with a plate-like morphology. At 640 degreesC there was no evidence of the coating on XRD. Increasing the temperature to 670 degreesC led to further formation of AlVO4 and a dramatic reduction in V2O5. (C) 2003 Elsevier B.V. All rights reserved

    ВЛИЯНИЕ ТРАНСПОРТНыХ ЗАДЕРЖЕК ШЛАМОВыХ ПОТОКОВ НА ПРОДОЛЖИТЕЛЬНОСТЬ НЕСТАЦИОНАРНОГО РЕЖИМА РАБОТы ВОДНО-ШЛАМОВыХ СИСТЕМ

    No full text
    Проблема и ее связь с научными и практическими задачами. Все подре-шетные воды гравитационного отделения аккумулируются в зумпфах большой емкости и далее перекачиваются на операцию предварительной регенерации в гидроциклоны, классификаторы или сгустители. При этом необходимо обеспе-чить подачу на самую верхнюю отметку для дальнейшего распределения шла-мовых потоков самотеком. Как правило, такие потоки характеризуются высо-кими транспортными задержками. Магистрали для шламовых потоков перед узлами вывода имеют меньшие геометрические размеры, переносят незначи-тельное количество пульпы по сравнению с вводными коммуникациями
    corecore