16 research outputs found

    Protection System against Phishing Attack

    No full text

    Perspectives of anaerobic decomposition of biomass for sustainable biogas production: A Review

    No full text
    Biogas production from biomass is an eco-friendly approach that offers renewable energy generation, waste recycling, biofertilizer production along with maintaining environmental quality. Anaerobic decomposition is a familiar practice used for biogas production in worldwide, whereas only few substrates were convenient for attaining desired methane concentration in biogas. Hence, further advancements are necessary for the exploration and utilization of various complex organic materials for the purpose. This article gives a clear outlook on potential of various biomass for biogas production, necessity of pretreatment, applicability of microbial/enzyme addition, maintenance of various process parameters, formulation of suitable digester designs and future scope of this area. The livestock wastes and agricultural wastes possess high energy generation potential (71%) and sustainable utilization of such wastes are admirable to commercialize biogas production in future. Hence, selection of biomass through biochemical methane potential (BMP) analysis and biomass pretreatment prior to anaerobic decomposition is adequate to improve the quality and quantity of generated biogas. Addition of effective microorganisms or respective enzymes along with the employment of suitable bioreactors, are other perspectives to enhance decomposition. The single-stage and multi-stage systems possess much attention than other types of reactors since that offers accurate process management at four different stages of decomposition. Moreover, the maintenances of optimum pH, temperature, volatile fatty acids, carbon/nitrogen ratio, etc. are crucial to evade system unsteadiness during decomposition. Since comprehensive mathematical models are appropriate to make the anaerobic decomposition process economically feasible and advancement with these forecasts are adequate to commercialize this technology in the future

    Nutritional phases in Prader-Willi syndrome.

    No full text
    Prader-Willi syndrome (PWS) is a complex neurobehavioral condition which has been classically described as having two nutritional stages: poor feeding, frequently with failure to thrive (FTT) in infancy (Stage 1), followed by hyperphagia leading to obesity in later childhood (Stage 2). We have longitudinally followed the feeding behaviors of individuals with PWS and found a much more gradual and complex progression of the nutritional phases than the traditional two stages described in the literature. Therefore, this study characterizes the growth, metabolic, and laboratory changes associated with the various nutritional phases of PWS in a large cohort of subjects. We have identified a total of seven different nutritional phases, with five main phases and sub-phases in phases 1 and 2. Phase 0 occurs in utero, with decreased fetal movements and growth restriction compared to unaffected siblings. In phase 1 the infant is hypotonic and not obese, with sub-phase 1a characterized by difficulty feeding with or without FTT (ages birth-15 months; median age at completion: 9 months). This phase is followed by sub-phase 1b when the infant grows steadily along a growth curve and weight is increasing at a normal rate (median age of onset: 9 months; age quartiles 5-15 months). Phase 2 is associated with weight gain-in sub-phase 2a the weight increases without a significant change in appetite or caloric intake (median age of onset 2.08 years; age quartiles 20-31 months;), while in sub-phase 2b the weight gain is associated with a concomitant increased interest in food (median age of onset: 4.5 years; quartiles 3-5.25 years). Phase 3 is characterized by hyperphagia, typically accompanied by food-seeking and lack of satiety (median age of onset: 8 years; quartiles 5-13 years). Some adults progress to phase 4 which is when an individual who was previously in phase 3 no longer has an insatiable appetite and is able to feel full. Therefore, the progression of the nutritional phases in PWS is much more complex than previously recognized. Awareness of the various phases will aid researchers in unraveling the pathophysiology of each phase and provide a foundation for developing rational therapies. Counseling parents of newly diagnosed infants with PWS as to what to expect with regard to these nutritional phases may help prevent or slow the early-onset of obesity in this syndrome
    corecore