72 research outputs found

    The effect of a Heat and Moisture Exchanger (Provox® HME) on pulmonary protection after total laryngectomy: a randomized controlled study

    Get PDF
    The goal of this randomized controlled study was to investigate the effect of Heat and Moisture Exchanger use on pulmonary symptoms and quality of life aspects in laryngectomized patients. Eighty laryngectomized patients were included and randomized into an HME and Control group. The effect of the HME was evaluated by means of Tally Sheets and Structured Questionnaires. The results showed a significant decrease in the frequency of coughing, forced expectoration, and stoma cleaning in the HME group. There were trends for the prosthetic speakers to report more fluent speech with the HME and for the HME group to report fewer sleeping problems. In conclusion, this study, performed in Poland, confirms the results of previous studies performed in other countries, showing that pulmonary symptoms decrease significantly with HME use and that related aspects such as speech and sleeping tend to improve, regardless of country or climate

    Structural Elucidation of Cisoid and Transoid Cyclization Pathways of a Sesquiterpene Synthase Using 2-Fluorofarnesyl Diphosphates

    Get PDF
    Sesquiterpene skeletal complexity in nature originates from the enzyme-catalyzed ionization of (trans,trans)-farnesyl diphosphate (FPP) (1a) and subsequent cyclization along either 2,3-transoid or 2,3-cisoid farnesyl cation pathways. Tobacco 5-epi-aristolochene synthase (TEAS), a transoid synthase, produces cisoid products as a component of its minor product spectrum. To investigate the cryptic cisoid cyclization pathway in TEAS, we employed (cis,trans)-FPP (1b) as an alternative substrate. Strikingly, TEAS was catalytically robust in the enzymatic conversion of (cis,trans)-FPP (1b) to exclusively (≥99.5%) cisoid products. Further, crystallographic characterization of wild-type TEAS and a catalytically promiscuous mutant (M4 TEAS) with 2-fluoro analogues of both all-trans FPP (1a) and (cis,trans)-FPP (1b) revealed binding modes consistent with preorganization of the farnesyl chain. These results provide a structural glimpse into both cisoid and transoid cyclization pathways efficiently templated by a single enzyme active site, consistent with the recently elucidated stereochemistry of the cisoid products. Further, computational studies using density functional theory calculations reveal concerted, highly asynchronous cyclization pathways leading to the major cisoid cyclization products. The implications of these discoveries for expanded sesquiterpene diversity in nature are discussed

    Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

    Get PDF
    Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production

    Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer

    Get PDF
    Irinotecan and 5-fluorouracil (5-FU) are used to treat metastatic colorectal cancer. Irinotecan's active metabolite is inactivated by UDP-glucuronosyltransferase 1A1 (UGT1A1), which is deficient in Gilbert's syndrome. Irinotecan and metabolites are transported by P-glycoprotein, encoded by ABCB1. 5-FU targets folate metabolism through inhibition of thymidylate synthase (TYMS). Methylenetetrahydrofolate reductase (MTHFR) generates active folate necessary for haematopoiesis. We retrospectively genotyped 140 Swedish and Norwegian irinotecan and 5-FU-treated colorectal cancer patients from the Nordic VI clinical trial for selected variants of UGT1A1, ABCB1, TYMS and MTHFR. We found an increased risk of clinically relevant early toxicity in patients carrying the ABCB1 3435 T/T genotype, Odds ratio (OR)=3.79 (95% confidence interval (CI)=1.09–13.2), and in patients carrying the UGT1A1*28/*28 genotype, OR=4.43 (95% CI=1.30–15.2). Patients with UGT1A1*28/*28 had an especially high risk of neutropenia, OR=6.87 (95% CI=1.70–27.7). Patients who had reacted with toxicity during the first two cycles were in total treated with fewer cycles (P<0.001), and less often responded to treatment (P<0.001). Genetic variation in ABCB1 was associated with both early toxicity and lower response to treatment. Carriers of the ABCB1 1236T-2677T-3435T haplotype responded to treatment less frequently (43 vs 67%, P=0.027), and survived shorter time, OR=1.56 (95% CI=1.01–2.45)

    Digital Quantification of Human Eye Color Highlights Genetic Association of Three New Loci

    Get PDF
    Previous studies have successfully identified genetic variants in several genes associated with human iris (eye) color; however, they all used simplified categorical trait information. Here, we quantified continuous eye color variation into hue and saturation values using high-resolution digital full-eye photographs and conducted a genome-wide association study on 5,951 Dutch Europeans from the Rotterdam Study. Three new regions, 1q42.3, 17q25.3, and 21q22.13, were highlighted meeting the criterion for genome-wide statistically significant association. The latter two loci were replicated in 2,261 individuals from the UK and in 1,282 from Australia. The LYST gene at 1q42.3 and the DSCR9 gene at 21q22.13 serve as promising functional candidates. A model for predicting quantitative eye colors explained over 50% of trait variance in the Rotterdam Study. Over all our data exemplify that fine phenotyping is a useful strategy for finding genes involved in human complex traits

    Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis

    Get PDF
    Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents

    Astaxanthin vs placebo on arterial stiffness, oxidative stress and inflammation in renal transplant patients (Xanthin): a randomised controlled trial

    Get PDF
    Background: There is evidence that renal transplant recipients have accelerated atherosclerosis manifest by increased cardiovascular morbidity and mortality. The high incidence of atherosclerosis is, in part, related to increased arterial stiffness, vascular dysfunction, elevated oxidative stress and inflammation associated with immunosuppressive therapy. The dietary supplement astaxanthin has shown promise as an antioxidant and anti-inflammatory therapeutic agent in cardiovascular disease. The aim of this trial is to investigate the effects of astaxanthin supplementation on arterial stiffness, oxidative stress and inflammation in renal transplant patients

    Variation in Herbivory-induced Volatiles Among Cucumber (Cucumis sativus L.) Varieties has Consequences for the Attraction of Carnivorous Natural Enemies

    Get PDF
    In response to herbivory by arthropods, plants emit herbivory-induced volatiles that attract carnivorous enemies of the inducing herbivores. Here, we compared the attractiveness of eight cucumber varieties (Cucumis sativus L.) to Phytoseiulus persimilis predatory mites after infestation of the plants with herbivorous spider mites (Tetranychus urticae) under greenhouse conditions. Attractiveness differed considerably, with the most attractive variety attracting twice as many predators as the least attractive variety. Chemical analysis of the volatiles released by the infested plants revealed significant differences among varieties, both in quantity and quality of the emitted blends. Comparison of the attractiveness of the varieties with the amounts of volatiles emitted indicated that the quality (composition) of the blend is more important for attraction than the amount of volatiles emitted. The amount of (E)-β-ocimene, (E,E)-TMTT, and two other, yet unidentified compounds correlated positively with the attraction of predatory mites. Quantities of four compounds negatively correlated with carnivore attraction, among them methyl salicylate, which is known to attract the predatory mite P. persimilis. The emission of methyl salicylate correlated with an unknown compound that had a negative correlation with carnivore attraction and hence could be masking the attractiveness of methyl salicylate. The results imply that the foraging success of natural enemies of pests can be enhanced by breeding for crop varieties that release specific volatiles

    Hypericum sp.: essential oil composition and biological activities

    Get PDF
    Phytochemical composition of Hypericum genus has been investigated for many years. In the recent past, studies on the essential oils (EO) of this genus have been progressing and many of them have reported interesting biological activities. Variations in the EO composition of Hypericum species influenced by seasonal variation, geographic distribution, phenological cycle and type of the organ in which EO are produced and/or accumulated have also been reported. Although many reviews attributed to the characterization as well as biological activities of H. perforatum crude extracts have been published, no review has been published on the EO composition and biological activities of Hypericum species until recently (Crockett in Nat Prod Commun 5(9):1493–1506, 2010; Bertoli et al. in Global Sci Books 5:29–47, 2011). In this article, we summarize and update information regarding the composition and biological activities of Hypericum species EO. Based on experimental work carried out in our laboratory we also mention possible biotechnology approaches envisaging EO improvement of some species of the genus.Fundação para a Ciência e a Tecnologia (FCT) - project PTDC/AGR AAM/70418/2006, SFRH/BD/ 13283/2003
    corecore