546 research outputs found
Cocliques of maximal size in the prime graph of a finite simple group
In this paper we continue our investgation of the prime graph of a finite
simple group started in http://arxiv.org/abs/math/0506294 (the printed version
appeared in [1]). We describe all cocliques of maximal size for all finite
simple groups and also we correct mistakes and misprints from our previous
paper. The list of correction is given in Appendix of the present paper.Comment: published version with correction
Population of isomers in decay of the giant dipole resonance
The value of an isomeric ratio (IR) in N=81 isotones (Ba, Ce,
Nd and Sm) is studied by means of the ( reaction.
This quantity measures a probability to populate the isomeric state in respect
to the ground state population. In ( reactions, the giant dipole
resonance (GDR) is excited and after its decay by a neutron emission, the
nucleus has an excitation energy of a few MeV. The forthcoming decay
by direct or cascade transitions deexcites the nucleus into an isomeric or
ground state. It has been observed experimentally that the IR for Ba
and Ce equals about 0.13 while in two heavier isotones it is even less
than half the size. To explain this effect, the structure of the excited states
in the energy region up to 6.5 MeV has been calculated within the Quasiparticle
Phonon Model. Many states are found connected to the ground and isomeric states
by , and transitions. The single-particle component of the wave
function is responsible for the large values of the transitions. The calculated
value of the isomeric ratio is in very good agreement with the experimental
data for all isotones. A slightly different value of maximum energy with which
the nuclei rest after neutron decay of the GDR is responsible for the reported
effect of the A-dependence of the IR.Comment: 16 pages, 4 Fig
Anisoplanatic adaptive optics in parallelized laser scanning microscopy
Inhomogeneities in the refractive index of a biological microscopy sample can introduce phase aberrations, severely impairing the quality of images. Adaptive optics can be employed to correct for phase aberrations and improve image quality. However, conventional adaptive optics can only correct a single phase aberration for the whole field of view (isoplanatic correction) while, due to the highly heterogeneous nature of biological tissues, the sample induced aberrations in microscopy often vary throughout the field of view (anisoplanatic aberration), limiting significantly the effectiveness of adaptive optics. This paper reports on a new approach for aberration correction in laser scanning confocal microscopy, in which a spatial light modulator is used to generate multiple excitation points in the sample to simultaneously scan different portions of the field of view with completely independent correction, achieving anisoplanatic compensation of sample induced aberrations, in a significantly shorter time compared to sequential isoplanatic correction of multiple image subregions. The method was tested in whole Drosophila brains and in larval Zebrafish, each showing a dramatic improvement in resolution and sharpness when compared to conventional isoplanatic adaptive optics
Customized CMOS wavefront sensor
We report on an integrated Hartmann wavefront sensor (WFS) using passive-pixel architecture and pixels clustered as position-sensitive detectors for dynamic wavefront analysis. This approach substitutes a conventional imager, such as a CCD or CMOS imager, by a customized detector, thus improving the overall speed performance. CMOS (complementary-metal- oxide-semiconductor) technology enables on-chip integration of several analog and digital circuitry. The sensor performance depends on the feature size of the technology, noise levels, photosensitive elements employed, architecture chosen and reconstruction algorithm.(undefined
Spin splitting of X-related donor impurity states in an AlAs barrier
We use magnetotunneling spectroscopy to observe the spin splitting of the
ground state of an X-valley-related Si-donor impurity in an AlAs barrier. We
determine the absolute magnitude of the effective Zeeman spin splitting factors
of the impurity ground state to be g= 2.2 0.1. We also investigate
the spatial form of the electron wave function of the donor ground state, which
is anisotropic in the growth plane
Shaped-pulse optimisation of coherent soft-x-rays
High-harmonic generation is one of the most extreme nonlinear-optical
processes observed to date. By focusing an intense laser pulse into a gas, the
light-atom interaction that occurs during the process of ionising the atoms
results in the generation of harmonics of the driving laser frequency, that
extend up to order ~300 (corresponding to photon energies from 4 to >500eV).
Because this technique is simple to implement and generates coherent,
laser-like, soft-x-ray beams, it is currently being developed for applications
in science and technology including probing of dynamics in chemical and
materials systems and for imaging. In this work we demonstrate that by
carefully controlling the shape of intense light pulses of 6-8 optical cycles,
we can control the interaction of light with an atom as it is being ionised, in
a way that improves the efficiency of x-ray generation by an order of
magnitude. Furthermore, we demonstrate that it is possible to control the
spectral characteristics of the emitted radiation and to channel the
interaction between different-order nonlinear processes. The result is an
increased utility of harmonic generation as a light source, as well as the
first demonstration of optical pulse-shaping techniques to control high-order
nonlinear processes.Comment: 16 pages, 3 figure
Abelian symmetries in multi-Higgs-doublet models
N-Higgs doublet models (NHDM) are a popular framework to construct
electroweak symmetry breaking mechanisms beyond the Standard model. Usually,
one builds an NHDM scalar sector which is invariant under a certain symmetry
group. Although several such groups have been used, no general analysis of
symmetries possible in the NHDM scalar sector exists. Here, we make the first
step towards this goal by classifying the elementary building blocks, namely
the abelian symmetry groups, with a special emphasis on finite groups. We
describe a strategy that identifies all abelian groups which are realizable as
symmetry groups of the NHDM Higgs potential. We consider both the groups of
Higgs-family transformations only and the groups which also contain generalized
CP transformations. We illustrate this strategy with the examples of 3HDM and
4HDM and prove several statements for arbitrary N.Comment: 33 pages, 2 figures; v2: conjecture 3 is proved and becomes theorem
3, more explanations of the main strategy are added, matches the published
versio
Wave function mapping conditions in Open Quantum Dots structures
We discuss the minimal conditions for wave function spectroscopy, in which
resonant tunneling is the measurement tool. Two systems are addressed: resonant
tunneling diodes, as a toy model, and open quantum dots. The toy model is used
to analyze the crucial tunning between the necessary resolution in
current-voltage characteristics and the breakdown of the wave functions probing
potentials into a level splitting characteristic of double quantum wells. The
present results establish a parameter region where the wavefunction
spectroscopy by resonant tunneling could be achieved. In the case of open
quantum dots, a breakdown of the mapping condition is related to a change into
a double quantum dot structure induced by the local probing potential. The
analogy between the toy model and open quantum dots show that a precise control
over shape and extention of the potential probes is irrelevant for wave
function mapping. Moreover, the present system is a realization of a tunable
Fano system in the wave function mapping regime.Comment: 6 pages, 6 figure
Partial level density of the n-quasiparticle excitations in the nuclei of the 39< A <201 region
Level density and radiative strength functions are obtained from the analysis
of two-step cascades intensities following the thermal neutrons capture. The
data on level density are approximated by the sum of the partial level
densities corresponding to n quasiparticles excitation. The most probable
values of the collective enhancement factor of the level density are found
together with the thresholds of the next Cooper nucleons pair breaking. These
data allow one to calculate the level density of practically any nucleus in
given spin window in the framework of model concepts, taking into account all
known nuclear excitation types. The presence of an approximation results
discrepancy with theoretical statements specifies the necessity of rather
essentially developing the level density models. It also indicates the
possibilities to obtain the essentially new information on nucleon correlation
functions of the excited nucleus from the experiment.Comment: 29 pages, 8 figures, 2 table
- …