3,237 research outputs found

    Lagrangian bias in the local bias model

    Full text link
    It is often assumed that the halo-patch fluctuation field can be written as a Taylor series in the initial Lagrangian dark matter density fluctuation field. We show that if this Lagrangian bias is local, and the initial conditions are Gaussian, then the two-point cross-correlation between halos and mass should be linearly proportional to the mass-mass auto-correlation function. This statement is exact and valid on all scales; there are no higher order contributions, e.g., from terms proportional to products or convolutions of two-point functions, which one might have thought would appear upon truncating the Taylor series of the halo bias function. In addition, the auto-correlation function of locally biased tracers can be written as a Taylor series in the auto-correlation function of the mass; there are no terms involving, e.g., derivatives or convolutions. Moreover, although the leading order coefficient, the linear bias factor of the auto-correlation function is just the square of that for the cross-correlation, it is the same as that obtained from expanding the mean number of halos as a function of the local density only in the large-scale limit. In principle, these relations allow simple tests of whether or not halo bias is indeed local in Lagrangian space. We discuss why things are more complicated in practice. We also discuss our results in light of recent work on the renormalizability of halo bias, demonstrating that it is better to renormalize than not. We use the Lognormal model to illustrate many of our findings.Comment: 14 pages, published on JCA

    The unusual distribution of molecular gas and star formation in Arp 140

    Get PDF
    We investigate the atomic and molecular interstellar medium and star formation of NGC 275, the late-type spiral galaxy in Arp 140, which is interacting with NGC 274, an early-type system. The atomic gas (HI) observations reveal a tidal tail from NGC 275 which extends many optical radii beyond the interacting pair. The HI morphology implies a prograde encounter between the galaxy pair approximately 1.5 x 10**8 years ago. The Halpha emission from NGC 275 indicates clumpy irregular star-formation, clumpiness which is mirrored by the underlying mass distribution as traced by the Ks-band emission. The molecular gas distribution is striking in its anti-correlation with the {HII regions. Despite the evolved nature of NGC 275's interaction and its barred potential, neither the molecular gas nor the star formation are centrally concentrated. We suggest that this structure results from stochastic star formation leading to preferential consumption of the gas in certain regions of the galaxy. In contrast to the often assumed picture of interacting galaxies, NGC 275, which appears to be close to merger, does not display enhanced or centrally concentrated star formation. If the eventual merger is to lead to a significant burst of star formation it must be preceded by a significant conversion of atomic to molecular gas as at the current rate of star formation all the molecular gas will be exhausted by the time the merger is complete.Comment: 13 paper, accepted my Monthly Notices of the Royal Astronomical Societ

    The Mass Function of Dark Halos in Superclusters and Voids

    Full text link
    A modification of the Press-Schechter theory allowing for presence of a background large-scale structure (LSS) - a supercluster or a void, is proposed. The LSS is accounted as the statistical constraints in form of linear functionals of the random overdensity field. The deviation of the background density within the LSS is interpreted in a pseudo-cosmological sense. Using the constraints formalism may help us to probe non-trivial spatial statistics of haloes, e.g. edge and shape effects on boundaries of the superclusters and voids. Parameters of the constraints are connected to features of the LSS: its mean overdensity, a spatial scale and a shape, and spatial momenta of higher orders. It is shown that presence of a non-virialized LSS can lead to an observable deviation of the mass function. This effect is exploited to build a procedure to recover parameters of the background perturbation from the observationally estimated mass function.Comment: 23 pages, 6 figures; to be appeared in Astronomy Reports, 2014, Vol. 58, No. 6, pp. 386-39

    Studies on immunocytochemical localization of inhibin-like material in human prostatic tissue: comparison of its distribution in normal, benign and malignant prostates.

    Get PDF
    A specific antiserum has been generated against inhibin-like material (ILM) of prostatic origin. Using the immunoperoxidase technique, localization of ILM has been examined in a total of 114 prostates including normal (4 specimens), malignant (46) and hyperplastic (55) tissues. ILM positive immunocytochemical reactions were confined to the cytoplasm and not the nucleus of the prostatic acinar cells in the three categories of prostate, whereas the stroma showed negative reactions. The intensity of positive reactions decreased in the following order: Hyperplasia, incidental and moderately differentiated carcinomas, poorly differentiated carcinomas, whereas metaplasia and granulomatous prostatitis gave negative reactions for ILM. Using this experimental protocol, 200 non-prostatic tissue were found to be completely negative, demonstrating the specificity of the test for prostatic epithelium. These findings indicate a potential use of ILM as a marker of prostatic tissue

    Comparative Analysis of Molecular Clouds in M31, M33 and the Milky Way

    Get PDF
    We present BIMA observations of a 2\arcmin field in the northeastern spiral arm of M31. In this region we find six giant molecular clouds that have a mean diameter of 57±\pm13 pc, a mean velocity width of 6.5±\pm1.2 \kms, and a mean molecular mass of 3.0 ±\pm 1.6 ×\times 105^5\Msun. The peak brightness temperature of these clouds ranges from 1.6--4.2 K. We compare these clouds to clouds in M33 observed by \citet{wilson90} using the OVRO millimeter array, and some cloud complexes in the Milky Way observed by \cite{dame01} using the CfA 1.2m telescope. In order to properly compare the single dish data to the spatially filtered interferometric data, we project several well-known Milky Way complexes to the distance of Andromeda and simulate their observation with the BIMA interferometer. We compare the simulated Milky Way clouds with the M31 and M33 data using the same cloud identification and analysis technique and find no significant differences in the cloud properties in all three galaxies. Thus we conclude that previous claims of differences in the molecular cloud properties between these galaxies may have been due to differences in the choice of cloud identification techniques. With the upcoming CARMA array, individual molecular clouds may be studied in a variety of nearby galaxies. With ALMA, comprehensive GMC studies will be feasible at least as far as the Virgo cluster. With these data, comparative studies of molecular clouds across galactic disks of all types and between different galaxy disks will be possible. Our results emphasize that interferometric observations combined with the use of a consistent cloud identification and analysis technique will be essential for such forthcoming studies that will compare GMCs in the Local Group galaxies to galaxies in the Virgo cluster.Comment: Accepted for Publication in the Astrophysical Journa

    Inner Molecular Rings in Barred Galaxies: BIMA SONG CO Observations

    Full text link
    Although inner star-forming rings are common in optical images of barred spiral galaxies, observational evidence for the accompanying molecular gas has been scarce. In this paper we present images of molecular inner rings, traced using the CO (1-0) emission line, from the Berkeley-Illinois-Maryland-Association Survey of Nearby Galaxies (BIMA SONG). We detect inner ring CO emission from all five SONG barred galaxies classified as inner ring (type (r)). We also examine the seven SONG barred galaxies classified as inner spiral (type (s)); in one of these, NGC 3627, we find morphological and kinematic evidence for a molecular inner ring. Inner ring galaxies have been classified as such based on optical images, which emphasize recent star formation. We consider the possibility that there may exist inner rings in which star formation efficiency is not enhanced. However, we find that in NGC 3627 the inner ring star formation efficiency is enhanced relative to most other regions in that galaxy. We note that the SONG (r) galaxies have a paucity of CO and H alpha emission interior to the inner ring (except near the nucleus), while NGC 3627 has relatively bright bar CO and H alpha emission; we suggest that galaxies with inner rings such as NGC 3627 may be misclassified if there are significant amounts of gas and star formation in the bar.Comment: To be published in the Astrophysical Journal, July 2002 A version of the paper with full resolution figures is available at: http://www.astro.umd.edu/~mregan/ms.ps.g

    Nonlinear Velocity-Density Coupling: Analysis by Second-Order Perturbation Theory

    Get PDF
    Cosmological linear perturbation theory predicts that the peculiar velocity V(x)V(x) and the matter overdensity ÎŽ(x)\delta(x) at a same point xx are statistically independent quantities, as log as the initial density fluctuations are random Gaussian distributed. However nonlinear gravitational effects might change the situation. Using framework of second-order perturbation theory and the Edgeworth expansion method, we study local density dependence of bulk velocity dispersion that is coarse-grained at a weakly nonlinear scale. For a typical CDM model, the first nonlinear correction of this constrained bulk velocity dispersion amounts to ∌0.3ÎŽ\sim 0.3\delta (Gaussian smoothing) at a weakly nonlinear scale with a very weak dependence on cosmological parameters. We also compare our analytical prediction with published numerical results given at nonlinear regimes.Comment: 16 pages including 2 figures, ApJ 537 in press (July 1

    Using Bars As Signposts of Galaxy Evolution at High and Low Redshifts

    Get PDF
    An analysis of the NICMOS Deep Field shows that there is no evidence of a decline in the bar fraction beyond z~0.7, as previously claimed; both bandshifting and spatial resolution must be taken into account when evaluating the evolution of the bar fraction. Two main caveats of this study were a lack of a proper comparison sample at low redshifts and a larger number of galaxies at high redshifts. We address these caveats using two new studies. For a proper local sample, we have analyzed 134 spirals in the near-infrared using 2MASS (main results presented by Menendez-Delmestre in this volume) which serves as an ideal anchor for the low-redshift Universe. In addition to measuring the mean bar properties, we find that bar size is correlated with galaxy size and brightness, but the bar ellipticity is not correlated with these galaxy properties. The bar length is not correlated with the bar ellipticity. For larger high redshift samples we analyze the bar fraction from the 2-square degree COSMOS ACS survey. We find that the bar fraction at z~0.7 is ~50%, consistent with our earlier finding of no decline in bar fraction at high redshifts.Comment: In the proceedings of "Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note

    Substructure and the halo model of large-scale structure

    Get PDF
    We develop the formalism to include substructure in the halo model of clustering. Real halos are not likely to be perfectly smooth, but have substructure which has so far been neglected in the halo model -- our formalism allows one to estimate the effects of this substructure on measures of clustering. We derive expressions for the two-point correlation function, the power-spectrum, the cross-correlation between galaxies and mass, as well as higher order correlation functions. Simple forms of the formulae are obtained for the limit in which the size of the subclumps and mass fraction in them is small. Inclusion of substructure allows for a more accurate analysis of the statistical effects of gravitational lensing. It can also bring the halo model predictions into better agreement with the small-scale structure seen in recent high resolution simulations of hierarchical clustering.Comment: 9 pages, 1 figure. Submitted to MNRA

    A Spitzer Unbiased Ultradeep Spectroscopic Survey

    Get PDF
    We carried out an unbiased, spectroscopic survey using the low-resolution module of the infrared spectrograph (IRS) on board Spitzer targeting two 2.6 square arcminute regions in the GOODS-North field. IRS was used in spectral mapping mode with 5 hours of effective integration time per pixel. One region was covered between 14 and 21 microns and the other between 20 and 35 microns. We extracted spectra for 45 sources. About 84% of the sources have reported detections by GOODS at 24 microns, with a median F_nu(24um) ~ 100 uJy. All but one source are detected in all four IRAC bands, 3.6 to 8 microns. We use a new cross-correlation technique to measure redshifts and estimate IRS spectral types; this was successful for ~60% of the spectra. Fourteen sources show significant PAH emission, four mostly SiO absorption, eight present mixed spectral signatures (low PAH and/or SiO) and two show a single line in emission. For the remaining 17, no spectral features were detected. Redshifts range from z ~ 0.2 to z ~ 2.2, with a median of 1. IR Luminosities are roughly estimated from 24 microns flux densities, and have median values of 2.2 x 10^{11} L_{\odot} and 7.5 x 10^{11} L_{\odot} at z ~ 1 and z ~ 2 respectively. This sample has fewer AGN than previous faint samples observed with IRS, which we attribute to the fainter luminosities reached here.Comment: Published in Ap
    • 

    corecore