Cosmological linear perturbation theory predicts that the peculiar velocity
V(x) and the matter overdensity δ(x) at a same point x are
statistically independent quantities, as log as the initial density
fluctuations are random Gaussian distributed. However nonlinear gravitational
effects might change the situation. Using framework of second-order
perturbation theory and the Edgeworth expansion method, we study local density
dependence of bulk velocity dispersion that is coarse-grained at a weakly
nonlinear scale. For a typical CDM model, the first nonlinear correction of
this constrained bulk velocity dispersion amounts to ∼0.3δ (Gaussian
smoothing) at a weakly nonlinear scale with a very weak dependence on
cosmological parameters. We also compare our analytical prediction with
published numerical results given at nonlinear regimes.Comment: 16 pages including 2 figures, ApJ 537 in press (July 1