We investigate the atomic and molecular interstellar medium and star
formation of NGC 275, the late-type spiral galaxy in Arp 140, which is
interacting with NGC 274, an early-type system. The atomic gas (HI)
observations reveal a tidal tail from NGC 275 which extends many optical radii
beyond the interacting pair. The HI morphology implies a prograde encounter
between the galaxy pair approximately 1.5 x 10**8 years ago. The Halpha
emission from NGC 275 indicates clumpy irregular star-formation, clumpiness
which is mirrored by the underlying mass distribution as traced by the Ks-band
emission. The molecular gas distribution is striking in its anti-correlation
with the {HII regions. Despite the evolved nature of NGC 275's interaction and
its barred potential, neither the molecular gas nor the star formation are
centrally concentrated. We suggest that this structure results from stochastic
star formation leading to preferential consumption of the gas in certain
regions of the galaxy. In contrast to the often assumed picture of interacting
galaxies, NGC 275, which appears to be close to merger, does not display
enhanced or centrally concentrated star formation. If the eventual merger is to
lead to a significant burst of star formation it must be preceded by a
significant conversion of atomic to molecular gas as at the current rate of
star formation all the molecular gas will be exhausted by the time the merger
is complete.Comment: 13 paper, accepted my Monthly Notices of the Royal Astronomical
Societ