2,266 research outputs found

    Surface protection of graphite fabric/PMR-15 composites subjected to thermal oxidation

    Get PDF
    Graphite fabric/PMR-15 laminates develop matrix cracks during long-term exposure in air at temperatures in the range of 500 to 600 F. This study was performed to demonstrate the effectiveness of incorporating graphite mat surface plies as a means of reducing the developing of matrix cracks. Celion 3000 graphite fabric/PMR-15 laminates were fabricated with graphite or graphite mat/325-mesh boron powder surface plies. Laminates without mat surface plies were also fabricated for control purposes. Composite flexural strength, flexural modulus, and interlaminar shear strength were determined at 288 C before and after long-term exposure (up to 1500 hr) in air at 316 C. The results of this study showed that the incorporation of graphite mat surface plies reduces matrix cracking and improves the elevated temperature mechanical property retention characteristics of the composites

    Equations to assess the impact resistance of fiber composites

    Get PDF
    Numerical analysis of impact resistance of composite materials containing fibers is discussed. Mathematical model of longitudinal impact resistance is presented. Potential impact resistance of various fiber composites as obtained by numerical analysis is presented as plotted curve

    Bonding of strain gages to fiber reinforced composite plastic materials

    Get PDF
    Strain gage is installed during molding of composite and utilizes the adhesive properties of the matrix resin in the composite to bond the strain gage in place. Gages thus embedded provide data at all temperatures that the matrix can withstand

    Criteria for selecting resin matrices for improved composite strength

    Get PDF
    Area under matrix of typical stress-strain diagram bounded by one percent strain is good index for priority assessment of matrix contribution to composite strength. Initial tangent modulus to stress-strain curve is useful parameter in translating matrix properties to composite properties

    Sub-picosecond compression by velocity bunching in a photo-injector

    Get PDF
    We present an experimental evidence of a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. The bunch length issued from a laser-driven radio-frequency electron source was compressed by a factor >3 using an S-band traveling wave structure located immediately downstream from the electron source. Experimental data are found to be in good agreement with particle tracking simulations.Comment: 19 pages, 9 figures, submitted to Phys. Rev. Spec. Topics A&

    Entanglement, Purity, and Information Entropies in Continuous Variable Systems

    Full text link
    Quantum entanglement of pure states of a bipartite system is defined as the amount of local or marginal ({\em i.e.}referring to the subsystems) entropy. For mixed states this identification vanishes, since the global loss of information about the state makes it impossible to distinguish between quantum and classical correlations. Here we show how the joint knowledge of the global and marginal degrees of information of a quantum state, quantified by the purities or in general by information entropies, provides an accurate characterization of its entanglement. In particular, for Gaussian states of continuous variable systems, we classify the entanglement of two--mode states according to their degree of total and partial mixedness, comparing the different roles played by the purity and the generalized p−p-entropies in quantifying the mixedness and bounding the entanglement. We prove the existence of strict upper and lower bounds on the entanglement and the existence of extremally (maximally and minimally) entangled states at fixed global and marginal degrees of information. This results allow for a powerful, operative method to measure mixed-state entanglement without the full tomographic reconstruction of the state. Finally, we briefly discuss the ongoing extension of our analysis to the quantification of multipartite entanglement in highly symmetric Gaussian states of arbitrary 1×N1 \times N-mode partitions.Comment: 16 pages, 5 low-res figures, OSID style. Presented at the International Conference ``Entanglement, Information and Noise'', Krzyzowa, Poland, June 14--20, 200

    Conceptualizations of suicide through time and socio-economic factors: a historical mini-review

    Get PDF
    OBJECTIVES: Suicide is a complex phenomenon determined by the interplay of an articulated network of factors including socio-economic factors which have a decisive role. This paper investigates the development of the modern conceptualization of suicide in Europe, its sociological understandings and its intertwinement with economic cycles throughout time. METHODS: MEDLINE, SCHOLAR, EMBASE using the keywords 'socioeconomic factors AND suicide'; 'economic cycles AND suicide'; 'history AND suicide' without timeframe limitations. Moreover, journal-by-journal search in journals of related areas was performed. RESULTS: In total, 51 historical studies focusing on the subjects in European countries were included. Three main areas arose: (a) development of the conceptualization of suicide over time; (b) sociological understandings of suicide according to the structure of society and its economy of power; (c) economic theories explaining the intertwinement of economic cycles and suicides. CONCLUSIONS: Suicide is a deeply human phenomenon inescapably linked to and grounded in society and economic cycles. Understandings from the past show the importance of accurate analysis of socio-economic contexts that shape societies together with man's own sense of self in order to organize multi-layered tangible and intangible support strategies to better understand and prevent suicide in this day and age

    Designing All Graphdiyne Materials as Graphene Derivatives: Topologically Driven Modulation of Electronic Properties

    Get PDF
    Designing new 2D systems with tunable properties is an important subject for science and technology. Starting from graphene, we developed an algorithm to systematically generate 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and sp/sp(2) carbon ratios. We analyze how structural and topological effects can tune the relative stability and the electronic behavior, to propose a rationale for the development of new systems with tailored properties. A total of 26 structures have been generated, including the already known polymorphs such as alpha-, beta-, and gamma-GDY. Periodic density functional theory calculations have been employed to optimize the 2D crystal structures and to compute the total energy, the band structure, and the density of states. Relative energies with respect to graphene have been found to increase when the values of the carbon sp/sp(2) ratio increase, following however different trends based on the peculiar topologies present in the crystals. These topologies also influence the band structure, giving rise to semiconductors with a finite band gap, zero-gap semiconductors displaying Dirac cones, or metallic systems. The different trends allow identifying some topological effects as possible guidelines in the design of new 2D carbon materials beyond graphene

    Asymptotically optimal quantum channel reversal for qudit ensembles and multimode Gaussian states

    Get PDF
    We investigate the problem of optimally reversing the action of an arbitrary quantum channel C which acts independently on each component of an ensemble of n identically prepared d-dimensional quantum systems. In the limit of large ensembles, we construct the optimal reversing channel R* which has to be applied at the output ensemble state, to retrieve a smaller ensemble of m systems prepared in the input state, with the highest possible rate m/n. The solution is found by mapping the problem into the optimal reversal of Gaussian channels on quantum-classical continuous variable systems, which is here solved as well. Our general results can be readily applied to improve the implementation of robust long-distance quantum communication. As an example, we investigate the optimal reversal rate of phase flip channels acting on a multi-qubit register.Comment: 17 pages, 3 figure
    • …
    corecore