2,110 research outputs found

    Determining physical properties of the cell cortex

    Get PDF
    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse grained physical description of the cortex in terms of a two dimensional thin film of an active viscoelastic gel. To determine the Maxwell time, the hydrodynamic length and the ratio of active stress and per-area friction, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. We provide an accurate and robust means for measuring physical parameters of the actomyosin cortical layer.It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights in the active mechanics processes that govern tissue-scale morphogenesis.Comment: 17 pages, 4 figure

    Thermalisation time and specific heat of neutron stars crust

    Full text link
    We discuss the thermalisation process of the neutron stars crust described by solving the heat transport equation with a microscopic input for the specific heat of baryonic matter. The heat equation is solved with initial conditions specific to a rapid cooling of the core. To calculate the specific heat of inner crust baryonic matter, i.e., nuclear clusters and unbound neutrons, we use the quasiparticle spectrum provided by the Hartree-Fock-Bogoliubov approach at finite temperature. In this framework we analyse the dependence of the crust thermalisation on pairing properties and on cluster structure of inner crust matter. It is shown that the pairing correlations reduce the crust thermalisation time by a very large fraction. The calculations show also that the nuclear clusters have a non-negligible influence on the time evolution of the surface temperature of the neutron star.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    Fine-Scale Spatial Organization of Face and Object Selectivity in the Temporal Lobe: Do Functional Magnetic Resonance Imaging, Optical Imaging, and Electrophysiology Agree?

    Get PDF
    The spatial organization of the brain's object and face representations in the temporal lobe is critical for understanding high-level vision and cognition but is poorly understood. Recently, exciting progress has been made using advanced imaging and physiology methods in humans and nonhuman primates, and the combination of such methods may be particularly powerful. Studies applying these methods help us to understand how neuronal activity, optical imaging, and functional magnetic resonance imaging signals are related within the temporal lobe, and to uncover the fine-grained and large-scale spatial organization of object and face representations in the primate brain

    Lamellar and «club-shaped» corpuscular nerve endings in human gingival mucosa. A light and electron microscopic study

    Get PDF
    A study on the presence of corpuscular nerve endings in human gingival mucosa was performed using both light and transmission electron microscopic (TEM) techniques. Both round and oval lamellar corpuscles were detected by light microscopy. They were located either subepithelially, close to the basement membrane, or within the papillae, deeply invaginated into the overlying epithelium. TEM techniques showed convoluted structures with unmyelinated fibre arborizations leading to an afferent fibre supported by the so called lamellar cells. The presence of blood vessels, collagenous fibrils, desmosome-like junctions, cytoplasmic organelles, as well as the similarity with some previously described mechanoreceptors, suggested the role of such corpuscular nerve endings in transmitting a nervous impulse induced by mechanical stimulation. Other simpler structures were also observed and named «club-shaped» corpuscles: they could support the more complex ones in responding to the strengths and the movements directly influencing the gingival mucosa.La prĂ©sence de terminaisons nerveuses corpusculaires dans la muqueuse gingivale humaine a Ă©tĂ© observĂ©e tant en microscopie optique qu’en microscopie Ă©lectronique Ă  transmission. En microscopie optique on a remarquĂ© des corpuscules lamellaires ronds et ovalaires, qui Ă©taient localisĂ©s tant au dessous de l’épithĂ©lium, tout prĂšs de la membrane basale, qu’au dedans des papilles, profondĂ©ment insĂ©rĂ©s dans l’épithĂ©lium.En microscopie Ă©lectronique on a observĂ© des structures convolutĂ©es pourvues d’arborisations de fibres nerveuses sans myĂ©line qui vont se rĂ©unir dans une fibre affĂ©rente supportĂ©e par des cellules dites lamellaires. La prĂ©sence de vaisseaux, de fibrilles collagĂšnes, de jonctions telles que desmoses, d’inclusions cytoplasmiques autant que la ressemblance avec quelques mĂ©canorĂ©cepteurs dĂ©crits en littĂ©rature, suggĂ©rait un rĂŽle de ces terminaisons nerveuses corpusculaires en envoyant un impulse nerveux induit par une stimulation mĂ©canique. On a aussi observĂ© des corpuscules plus simples appelĂ©s «club-shaped» qui pourraient supporter les plus complexes dans la rĂ©ponse aux forces et aux mouvements qui influencent directement la muqueuse gingivale

    High resolution studies of low-energy electron attachment to SF5Cl: Product anions and absolute cross sections

    Get PDF
    Low energy electron attachment to SF5_5Cl was studied at high energy resolution by mass spectrometric detection of the product anions. Two variants of the laser photoelectron attachment (LPA) technique (Kaiserslautern) were used for determining the threshold behaviour of the yield for SF5−_5^- formation at about 1 meV resolution, and to investigate the relative cross sections for Cl−^-, FCl−^-, and SF5−_5^- formation towards higher energies (up to 1 eV) at about 20 meV resolution. Thermal swarm measurements (Birmingham) were used to place the relative LPA cross sections on an absolute scale. A trochoidal electron monochromator (Innsbruck) was used for survey measurements of the relative cross sections for the different product anions over the energy range of 0-14 eV with a resolution of 0.30 eV. Combined with earlier beam data (taken at Berlin, J. Chem. Phys. 88 (1988) 149), the present experimental results provide a detailed set of partial cross sections for anion formation in low-energy electron collisions with SF5_5Cl

    Excitonic photoluminescence in symmetric coupled double quantum wells subject to an external electric field

    Full text link
    The effect of an external electric field F on the excitonic photoluminescence (PL) spectra of a symmetric coupled double quantum well (DQW) is investigated both theoretically and experimentally. We show that the variational method in a two-particle electron-hole wave function approximation gives a good agreement with measurements of PL on a narrow DQW in a wide interval of F including flat-band regime. The experimental data are presented for an MBE-grown DQW consisting of two 5 nm wide GaAs wells, separated by a 4 monolayers (MLs) wide pure AlAs central barrier, and sandwiched between Ga_{0.7}Al_{0.3}As layers. The bias voltage is applied along the growth direction. Spatially direct and indirect excitonic transitions are identified, and the radius of the exciton and squeezing of the exciton in the growth direction are evaluated variationally. The excitonic binding energies, recombination energies, oscillator strengths, and relative intensities of the transitions as functions of the applied field are calculated. Our analysis demonstrates that this simple model is applicable in case of narrow DQWs not just for a qualitative description of the PL peak positions but also for the estimation of their individual shapes and intensities.Comment: 5 pages, 4 figures (accepted in Phys. Rev. B

    Laser-induced transient currents in CdZnTe quasi-hemispherical radiation detector

    Get PDF
    Laser-induced transient currents were measured after applying pulsed or direct-current bias to a CdZnTe quasi-hemispherical radiation detector with gold contacts. The temporal evolution of current transients was analyzed to evaluate the dynamics of the space charge formation and its spatial distribution. The observed effects were explained by a model involving hole injection from positively biased contacts. Experimental results were complemented by numerical simulations, which supported the model. This paper discusses how the detected phenomena affect the detector performance and proposes an improved detector design
    • 

    corecore