127 research outputs found

    The Collins-Roscoe mechanism and D-spaces

    Full text link
    We prove that if a space X is well ordered (αA)(\alpha A), or linearly semi-stratifiable, or elastic then X is a D-space

    A common intronic variant of PARP1 confers melanoma risk and mediates melanocyte growth via regulation of MITF

    Get PDF
    Previous genome-wide association studies have identified a melanoma-associated locus at 1q42.1 that encompasses a ~100-kb region spanning the PARP1 gene. Expression quantitative trait locus (eQTL) analysis in multiple cell types of the melanocytic lineage consistently demonstrated that the 1q42.1 melanoma risk allele (rs3219090[G]) is correlated with higher PARP1 levels. In silico fine-mapping and functional validation identified a common intronic indel, rs144361550 (−/GGGCCC; r2 = 0.947 with rs3219090), as displaying allele-specific transcriptional activity. A proteomic screen identified RECQL as binding to rs144361550 in an allele-preferential manner. In human primary melanocytes, PARP1 promoted cell proliferation and rescued BRAFV600E-induced senescence phenotypes in a PARylation-independent manner. PARP1 also transformed TERT-immortalized melanocytes expressing BRAFV600E. PARP1-mediated senescence rescue was accompanied by transcriptional activation of the melanocyte-lineage survival oncogene MITF, highlighting a new role for PARP1 in melanomagenesis

    Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the <it>FGFR2 </it>gene has been identified in a number of cancer sites. Overexpression of the <it>FGFR4 </it>protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the <it>FGFR2 </it>and <it>FGFR4 </it>genes and development of various cancers.</p> <p>Methods</p> <p>We evaluated the associations of four genetic variants in the <it>FGFR2 </it>gene highly related to breast cancer risk and the three common tag-SNPs in the <it>FGFR4 </it>gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls.</p> <p>Results</p> <p>We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer.</p> <p>Conclusion</p> <p>Given the power of this study, we did not detect any contribution of genetic variants in the <it>FGFR2 </it>or <it>FGFR4 </it>genes to inherited predisposition to skin cancer among Caucasian women.</p

    Effect of Citalopram on Emotion Processing in Humans:A Combined 5-HT [C]CUMI-101 PET and Functional MRI Study

    Get PDF
    A subset of patients started on a selective serotonin reuptake inhibitor (SSRI) initially experience increased anxiety, which can lead to early discontinuation before therapeutic effects are manifest. The neural basis of this early SSRI effect is not known. Presynaptic dorsal raphe neuron (DRN) 5-HT1A receptors are known to play a critical role in affect processing. Thus we investigated the effect of acute citalopram on emotional processing and the relationship between DRN 5-HT1A receptor availability and amygdala reactivity. Thirteen (mean age 48±9 years) healthy male subjects received either a saline or citalopram infusion intravenously (10 mg over 30 min) on separate occasions in a single-blind, random order, cross-over design. On each occasion, participants underwent a block design face-emotion processing task during fMRI known to activate the amygdala. Ten subjects also completed a positron emission tomography (PET) scan to quantify DRN 5-HT1A availability using [(11)C]CUMI-101.Citalopram infusion when compared to saline resulted in a significantly increased bilateral amygdala responses to fearful vs. neutral faces (Left p=0.025; Right p=0.038 FWE-corrected). DRN [(11)C]CUMI-101availability significantly positively correlated with the effect of citalopram on the left amygdala response to fearful faces (Z=2.51, p=0.027) and right amygdala response to happy faces (Z=2.33, p=0.032). Our findings indicate that the initial effect of SSRI treatment is to alter processing of aversive stimuli, and that this is linked to DRN 5-HT1A receptors in line with evidence that 5-HT1A receptors have a role in mediating emotional processing

    Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system.</p> <p>Methods</p> <p>We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data.</p> <p>Results</p> <p>We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct <it>in silico </it>experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine.</p> <p>Conclusions</p> <p>Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.</p

    A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk

    Get PDF
    Background This review provides a reappraisal of the potential effects of dairy foods, including dairy fats, on cardiovascular disease (CVD)/coronary heart disease (CHD) risk. Commodities and foods containing saturated fats are of particular focus as current public dietary recommendations are directed toward reducing the intake of saturated fats as a means to improve the overall health of the population. A conference of scientists from different perspectives of dietary fat and health was convened in order to consider the scientific basis for these recommendations. Aims This review and summary of the conference focus on four key areas related to the biology of dairy foods and fats and their potential impact on human health: (a) the effect of dairy foods on CVD in prospective cohort studies; (b) the impact of dairy fat on plasma lipid risk factors for CVD; (c) the effects of dairy fat on non-lipid risk factors for CVD; and (d) the role of dairy products as essential contributors of micronutrients in reference food patterns for the elderly. Conclusions Despite the contribution of dairy products to the saturated fatty acid composition of the diet, and given the diversity of dairy foods of widely differing composition, there is no clear evidence that dairy food consumption is consistently associated with a higher risk of CVD. Thus, recommendations to reduce dairy food consumption irrespective of the nature of the dairy product should be made with cautionJ. Bruce German, Robert A. Gibson, Ronald M. Krauss, Paul Nestel, Benoît Lamarche, Wija A. van Staveren, Jan M. Steijns, Lisette C. P. G. M. de Groot, Adam L. Lock and Frédéric Destaillat
    corecore