86 research outputs found

    Nanofibrous solid dosage form of living bacteria prepared by electrospinning

    Get PDF
    The aim of this work was to investigate the suitability of electrospinning for biodrug delivery and to develop an electrospinning-based method to produce vaginal drug delivery systems. Lactobacillus acidophilus bacteria were encapsulated into nanofibers of three different polymers (polyvinyl alcohol and polyvinylpyrrolidone with two different molar masses). Shelf life of the bacteria could be enhanced by the exclusion of water and by preparing a solid dosage form, which is an advantageous and patient-friendly way of administration. The formulations were stored at –20, 7 and 25°C, respectively. Viability testing showed that the nanofibers can provide long term stability for huge amounts of living bacteria if they are kept at (or below) 7°C. Furthermore, all kinds of nanowebs prepared in this work dissolved instantly when they got in contact with water, thus the developed biohybrid nanowebs can provide new potential ways for curing bacterial vaginosis

    May Measurement Month 2017: An analysis of blood pressure screening results in Nepal - South Asia

    Get PDF
    Hypertension is the leading risk factor of mortality in Nepal accounting for ∼33 000 deaths in 2016. However, more than 50% of the hypertensive patients are unaware of their status. We participated in the May Measurement Month 2017 (MMM17) project initiated worldwide by the International Society of Hypertension to raise the awareness on the importance of blood pressure (BP) screening. In this paper, we discuss the screening results of MMM17 in Nepal. An opportunistic cross-sectional survey of volunteers aged ≥18 years was carried out in May 2017 following the standard MMM protocol. Data were collected from 18 screening sites in 7 districts covering 5 provinces. Screenings were conducted either in health facilities, public places, or participants' homes. Trained volunteers with health science background and female community health volunteers were mobilized to take part in the screening. A total of 5972 individuals were screened and of 5968 participants, for whom a mean of the 2nd and 3rd readings was available, 1456 (24.4%) participants had hypertension; 908 (16.8%) of those not receiving treatment were hypertensive; and 248 (45.2%) of those being treated had uncontrolled BP. MMM17 is the first nationwide BP screening campaign undertaken in Nepal. Given the suboptimal treatment and control rates identified in the study, there is a strong imperative to scale up hypertension prevention, screening, and management programmes. These results suggest that opportunistic screening can identify significant numbers with hypertension. Mobilization of existing volunteer networks and support of community stakeholders, would be necessary to improve the overall impact and sustainability of future screening programmes

    Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach

    Get PDF
    Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006–2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data

    LPS-induced delayed preconditioning is mediated by hsp90 and involves the heat shock response in mouse kidney.

    Get PDF
    INTRODUCTION: We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. METHODS: Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. RESULTS: Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. CONCLUSION: LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning

    Heat Shock Protein-27, -60 and -90 expression in gastric cancer: association with clinicopathological variables and patient survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heat shock proteins (HSPs) are ubiquitous, highly conserved proteins across all the species and play essential roles in maintaining protein stability within the cells under normal conditions, while preventing stress-induced cellular damage. HSPs were also overexpressed in various types of cancer, being associated with tumor cell proliferation, differentiation and apoptosis. The aim of the present study was to evaluate the clinical significance of HSP -27, -60, and -90 expression in gastric carcinoma.</p> <p>Methods</p> <p>HSP -27, -60, and -90 proteins expression was assessed immunohistochemically in tumoral samples of 66 gastric adenocarcinoma patients and was statistically analyzed in relation to various clinicopathological characteristics, tumor proliferative capacity and patients' survival.</p> <p>Results</p> <p>HSP-27, -60, -90 proteins were abundantly expressed in gastric adenocarcinoma cases examined. HSP-27 expression was significantly associated with tumor size (pT, P = 0.026), the presence of organ metastases (pM, P = 0.046) and pStage (P = 0.041), while HSP-27 staining intensity with nodal status (pN, P = 0.042). HSP-60 expression was significantly associated with patients' sex (P = 0.011), while HSP-60 staining intensity with patients' age (P = 0.027) and tumor histopathological grade (P = 0.031). HSP-90 expression was not associated with any of the clinicopathological parameters examined; however, HSP-90 staining intensity was significantly associated with tumor size (pT, P = 0.020). High HSP-90 expression was significantly associated with longer overall survival times in univariate analysis (log-rank test, P = 0.033), being also identified as an independent prognostic factor in multivariate analysis (P = 0.026).</p> <p>Conclusion</p> <p>HSP-27, -60, and -90 were associated with certain clinicopathological parameters which are crucial for the management of gastric adenocarcinoma patient. HSP-90 expression may also be an independent prognostic indicator in gastric adenocarcinoma patients.</p

    Disease-Aging Network Reveals Significant Roles of Aging Genes in Connecting Genetic Diseases

    Get PDF
    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system–based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases

    Probing Molecular Mechanisms of the Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators of Functional Dynamics

    Get PDF
    Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients

    Analysis of Chaperone mRNA Expression in the Adult Mouse Brain by Meta Analysis of the Allen Brain Atlas

    Get PDF
    The pathology of many neurodegenerative diseases is characterized by the accumulation of misfolded and aggregated proteins in various cell types and regional substructures throughout the central and peripheral nervous systems. The accumulation of these aggregated proteins signals dysfunction of cellular protein homeostatic mechanisms such as the ubiquitin/proteasome system, autophagy, and the chaperone network. Although there are several published studies in which transcriptional profiling has been used to examine gene expression in various tissues, including tissues of neurodegenerative disease models, there has not been a report that focuses exclusively on expression of the chaperone network. In the present study, we used the Allen Brain Atlas online database to analyze chaperone expression levels. This database utilizes a quantitative in situ hybridization approach and provides data on 270 chaperone genes within many substructures of the adult mouse brain. We determined that 256 of these chaperone genes are expressed at some level. Surprisingly, relatively few genes, only 30, showed significant variations in levels of mRNA across different substructures of the brain. The greatest degree of variability was exhibited by genes of the DnaJ co-chaperone, Tetratricopeptide repeat, and the HSPH families. Our analysis provides a valuable resource towards determining how variations in chaperone gene expression may modulate the vulnerability of specific neuronal populations of mammalian brain

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd
    corecore