21,995 research outputs found

    Deuterium on Venus: Observations from Earth

    Get PDF
    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time

    Are multiphase competition & order-by-disorder the keys to understanding Yb2Ti2O7?

    Full text link
    If magnetic frustration is most commonly known for undermining long-range order, as famously illustrated by spin liquids, the ability of matter to develop new collective mechanisms in order to fight frustration is no less fascinating, providing an avenue for the exploration and discovery of unconventional properties of matter. Here we study an ideal minimal model of such mechanisms which, incidentally, pertains to the perplexing quantum spin ice candidate Yb2Ti2O7. Specifically, we explain how thermal and quantum fluctuations, optimized by order-by-disorder selection, conspire to expand the stability region of an accidentally degenerate continuous symmetry U(1) manifold against the classical splayed ferromagnetic ground state that is displayed by the sister compound Yb2Sn2O7. The resulting competition gives rise to multiple phase transitions, in striking similitude with recent experiments on Yb2Ti2O7 [Lhotel et al., Phys. Rev. B 89 224419 (2014)]. Considering the effective Hamiltonian determined for Yb2Ti2O7, we provide, by combining a gamut of numerical techniques, compelling evidence that such multiphase competition is the long-sought missing key to understanding the intrinsic properties of this material. As a corollary, our work offers a pertinent illustration of the influence of chemical pressure in rare-earth pyrochlores.Comment: 9 page

    Animal movement modelling: Independent or dependent models?

    Get PDF
    Hidden Markov models have become a popular time series method for the analysis of GPS tracked animals. Their advantage for identifying latent behavioural states compared with Independent Mixture models is that they take into account the time series dependency of successive displacement distances by the tracked animals. However, little is known about how the analysis results may differ depending on which of these approaches is used. We compared the results and interpretations obtained from fitting Hidden Markov and Independent Mixture models to simulated movement data as well as to field data recording the hourly movements of sable antelope and buffalo within the Kruger National Park, South Africa. Hidden Markov models consistently yielded narrower confidence intervals around parameters and smaller standard errors than simpler time independent mixture models, but for some data the improvement was marginal and the Independent Mixture model provided an adequate alternative for identifying the latent behavioural states of the animal. In general, it is expected Hidden Markov models will provide the better balance between model complexity and extensibility for animal movement modelling from a statistical perspective. However, in some cases, Independent Mixture models could provide an adequate alternative method and might be more faithful biologically

    How Many Templates for GW Chirp Detection? The Minimal-Match Issue Revisited

    Full text link
    In a recent paper dealing with maximum likelihood detection of gravitational wave chirps from coalescing binaries with unknown parameters we introduced an accurate representation of the no-signal cumulative distribution of the supremum of the whole correlator bank. This result can be used to derive a refined estimate of the number of templates yielding the best tradeoff between detector's performance (in terms of lost signals among those potentially detectable) and computational burden.Comment: submitted to Class. Quantum Grav. Typing error in eq. (4.8) fixed; figure replaced in version

    Using piloted simulation to measure pilot workload of landing a helicopter on a small ship

    Get PDF
    When conducting landings to a ship's deck in strong winds, helicopter pilot workload is often dominated by the turbulence within the ship's airwake. Previous studies have shown that larger ships create more aggressive airwakes and simulated flight trials had shown that it can be easier to land to a smaller ship than a large one. However, there are helicopter-enabled ships that are less than 100m in length and these will have significantly greater ship motion in rough seas than a large ship. The study reported in this paper has used a motion-base flight simulator to evaluate the pilot workload when landing to three geometrically similar ships of lengths 100m, 150m and 200m. Ship motion software has been used to create realistic deck displacements for sea states 4, 5 and 6, which are consistent with the increasing wind speed over the deck. It has been shown that the 100m ship was the most difficult to land to, with deck motion being the limiting factor. The next most difficult ship to land to was the 200m ship, with airwake turbulence being the limiting factor. The 150m ship generated the lowest pilot workload. The study has demonstrated that when ship motion is excessive, as it will be with small ships in rough seas, pilot workload will be dominated by deck motion during a landing task, but as the ship gets larger and more stable, airwake disturbances will dominate. It is clear from this study that realistic ship motion is essential when using piloted flight simulation to conduct simulated ship-helicopter operations

    Effect of hyperon bulk viscosity on neutron-star r-modes

    Full text link
    Neutron stars are expected to contain a significant number of hyperons in addition to protons and neutrons in the highest density portions of their cores. Following the work of Jones, we calculate the coefficient of bulk viscosity due to nonleptonic weak interactions involving hyperons in neutron-star cores, including new relativistic and superfluid effects. We evaluate the influence of this new bulk viscosity on the gravitational radiation driven instability in the r-modes. We find that the instability is completely suppressed in stars with cores cooler than a few times 10^9 K, but that stars rotating more rapidly than 10-30% of maximum are unstable for temperatures around 10^10 K. Since neutron-star cores are expected to cool to a few times 10^9 K within seconds (much shorter than the r-mode instability growth time) due to direct Urca processes, we conclude that the gravitational radiation instability will be suppressed in young neutron stars before it can significantly change the angular momentum of the star.Comment: final PRD version, minor typos etc correcte

    Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part II: application to partial differential equations

    Full text link
    A template-based generic programming approach was presented in a previous paper that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertainty quantification results for a 3D PDE application

    Isolation of Unknown Genes from Human Bone Marrow by Differental Screening and Single-Pass cDNA Sequences Determination

    Get PDF
    A cDNA sequencing project was initiated to characterize gene expression in human bone marrow and develop strategies to isolate novel genes. Forty-eight random cDNAs from total human bone marrow were subjected to single-pass DNA sequence analysis to determine a limited complexity of mRNAs expressed in the bone marrow. Overall, 8 cDNAs (17%) showed no similarity to known sequences. Information from DNA sequence analysis was used to develop a differential prescreen to subtract unwanted cDNAs and to enrich for unknown cDNAs. Forty-eight cDNAs that were negative with a complex probe were subject to single-pass DNA sequence determination. Of these prescreened cDNAs, the number of unknown sequences increased to 23 (48%). Unknown cDNAs were also characterized by RNA expression analysis using 25 different human leukemic cell lines. Of 13 unknown cDNAs tested, 10 were expressed in all cell types tested and 3 revealed a hematopoietic lineage-restricted expression pattern. Interestingly, while a total of only 96 bone marrow cDNAs were sequenced, 31 of these cDNAs represent sequences from unknown genes and 12 showed significant similarities to sequences in the data bases. One cDNA revealed a significant similarity to a serine/threonine-protein kinase at the amino acid level (56% identity for 123 amino acids) and may represent a previously unknown kinase. Differential screening techniques coupled with single-pass cDNA sequence analysis may prove to be a powerful and simple technique to examine developmental gene expression
    • …
    corecore