4,285 research outputs found
Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications
In-vacuo cryogenic environments are ideal for applications requiring both low
temperatures and extremely low particle densities. This enables reaching long
storage and coherence times for example in ion traps, essential requirements
for experiments with highly charged ions, quantum computation, and optical
clocks. We have developed a novel cryostat continuously refrigerated with a
pulse-tube cryocooler and providing the lowest vibration level reported for
such a closed-cycle system with 1 W cooling power for a <5 K experiment. A
decoupling system suppresses vibrations from the cryocooler by three orders of
magnitude down to a level of 10 nm peak amplitudes in the horizontal plane.
Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an
experimental chamber, mounted on an optical table, to the cryocooler through a
vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long
pendulum allows installation of the cryocooler in a separate, acoustically
isolated machine room. In the laser laboratory, we measured the residual
vibrations using an interferometric setup. The positioning of the 4 K elements
is reproduced to better than a few micrometer after a full thermal cycle to
room temperature. Extreme high vacuum on the mbar level is achieved.
In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a
setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB)
for a next-generation optical clock experiment using highly charged ions
Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using Quantum Logic
Most ions lack the fast, cycling transitions that are necessary for direct laser cooling. In most cases, they can still be cooled sympathetically through their Coulomb interaction with a second, coolable ion species confined in the same potential. If the charge-to-mass ratios of the two ion types are too mismatched, the cooling of certain motional degrees of freedom becomes difficult. This limits both the achievable fidelity of quantum gates and the spectroscopic accuracy. Here we introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes. We demonstrate it experimentally by simultaneously bringing two motional modes of a Be-Ar mixed Coulomb crystal close to their zero-point energies, despite the weak coupling between the ions. We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only in each of the two modes, corresponding to a residual mean motional phonon number of . Combined with the lowest observed electric field noise in a radiofrequency ion trap, these values enable an optical clock based on a highly charged ion with fractional systematic uncertainty below the level. Our scheme is also applicable to (anti-)protons, molecular ions, macroscopic charged particles, and other highly charged ion species, enabling reliable preparation of their motional quantum ground states in traps
Plant roots steer resilience to perturbation of river floodplains
Freshwater ecosystems along river floodplains host among the greatest biodiversity on Earth and are known to respond to anthropic pressure. For water impounded systems, resilience to changes in the natural flow regime is believed to be bi-directional. Whether such resilience prevents the system from returning to pristine conditions after the flow regime changes reverse is as yet unclear, though widely documented. In this work we show that temporal irreversibility of river floodplains to recover their status may be explained by the dynamics of riparian water-tolerant plant roots. Our model is a quantitative tool that will benefit scientists and practitioners in predicting the impact of changing flow regimes on long-term river floodplain dynamics
Ideally embedded space-times
Due to the growing interest in embeddings of space-time in higher-dimensional
spaces we consider a specific type of embedding. After proving an inequality
between intrinsically defined curvature invariants and the squared mean
curvature, we extend the notion of ideal embeddings from Riemannian geometry to
the indefinite case. Ideal embeddings are such that the embedded manifold
receives the least amount of tension from the surrounding space. Then it is
shown that the de Sitter spaces, a Robertson-Walker space-time and some
anisotropic perfect fluid metrics can be ideally embedded in a five-dimensional
pseudo-Euclidean space.Comment: layout changed and typos corrected; uses revtex
Reducing multiphoton ionization in a linearly polarized microwave field by local control
We present a control procedure to reduce the stochastic ionization of
hydrogen atom in a strong microwave field by adding to the original Hamiltonian
a comparatively small control term which might consist of an additional set of
microwave fields. This modification restores select invariant tori in the
dynamics and prevents ionization. We demonstrate the procedure on the
one-dimensional model of microwave ionization.Comment: 8 page
Growth, Conductivity, and Vapor Response Properties of Metal Ion-Carboxylate linked Nanoparticle Films
Nanoparticles of metals (Au, Ag, Pd, alloys) in the size range 1–3 nm diameter can be stabilized against aggregation of the metal particles by coating the metal surface with a dense monolayer of ligands (thiolates). The stabilization makes it possible to analytically define the nanoparticle composition (for example, Au140(hexanethiolate)53, I) and to elaborate the chemical functionality of the protecting monolayer (for example, Au140(C6)35(MUA)18, II, where C6 = hexanethiolate and MUA = mercaptoundecanoic acid). Network polymer films (IIfilm) on interdigitated array electrodes can be prepared from II, based on cation coordination (i.e., Cu2+, Zn2+, Ag+, methyl viologen) by the carboxylates of MUA. The electronic conductivity of the IIfilm network polymer films occurs by electron hopping between the Au140 nanoparticle cores, and offers an avenue for investigation of metal-to-metal nanoparticle electron transfer chemistry. The report begins with a brief summary of what is known about metal nanoparticle electron transfer chemistry. The investigation goes on to assess factors that influence the dynamics of film formation as well as film conductivity, in the interest of better understanding the parameters affecting electron hopping rates in IIfilm network polymer films. Finally, sorption of organic vapors into IIfilm causes a decreased electronic conductivity and increased mass that can be assessed using quartz crystal microbalance measurements. The change in electronic conductivity can be exploited for the sensing of organic vapors
- …