15,489 research outputs found
Comment on "Quantum back-reaction through the Bohmian particle"
In this Comment I point out some limitations of the proposal of Prezhdo and
Brooksby for coupling quantum and classical degrees of freedom
(Phys.Rev.Lett.86(2001)3215) if it is pushed too far.Comment: 1 page, REVTEX, no figure
High-temperature, high-pressure optical cell
The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem
The H.E.S.S. View of the Central 200 Parsecs
The inner few hundred parsecs of our galaxy provide a laboratory for the
study of the production and propagation of energetic particles.
Very-high-energy gamma-rays provide an effective probe of these processes and,
especially when combined with data from other wave-bands, gamma-rays
observations are a powerful diagnostic tool. Within this central region, data
from the H.E.S.S. instrument have revealed three discrete sources of
very-high-energy gamma-rays and diffuse emission correlated with the
distribution of molecular material. Here I provide an overview of these recent
results from H.E.S.S.Comment: Proceedings of the Galactic Centre Workshop 200
Dynamic Fracture in Single Crystal Silicon
We have measured the velocity of a running crack in brittle single crystal
silicon as a function of energy flow to the crack tip. The experiments are
designed to permit direct comparison with molecular dynamics simulations;
therefore the experiments provide an indirect but sensitive test of interatomic
potentials. Performing molecular dynamics simulations of brittle crack motion
at the atomic scale we find that experiments and simulations disagree showing
that interatomic potentials are not yet well understood.Comment: 4 pages, 4 figures, 19 reference
Nonlinear Band Structure in Bose Einstein Condensates: The Nonlinear Schr\"odinger Equation with a Kronig-Penney Potential
All Bloch states of the mean field of a Bose-Einstein condensate in the
presence of a one dimensional lattice of impurities are presented in closed
analytic form. The band structure is investigated by analyzing the stationary
states of the nonlinear Schr\"odinger, or Gross-Pitaevskii, equation for both
repulsive and attractive condensates. The appearance of swallowtails in the
bands is examined and interpreted in terms of the condensates superfluid
properties. The nonlinear stability properties of the Bloch states are
described and the stable regions of the bands and swallowtails are mapped out.
We find that the Kronig-Penney potential has the same properties as a
sinusoidal potential; Bose-Einstein condensates are trapped in sinusoidal
optical lattices. The Kronig-Penney potential has the advantage of being
analytically tractable, unlike the sinusoidal potential, and, therefore, serves
as a good model for experimental phenomena.Comment: Version 2. Fixed typos, added referenc
Cost benefit analysis of space communications technology. Volume 2: Final report
For abstract, see preceding accession
Released momentum distribution of a Fermi gas in the BCS-BEC crossover
We develop a time-dependent mean-field theory to investigate the released
momentum distribution and the released energy of an ultracold Fermi gas in the
BCS-BEC crossover after the scattering length has been set to zero by a fast
magnetic-field ramp. For a homogeneous gas we analyze the non-equilibrium
dynamics of the system as a function of the interaction strength and of the
ramp speed. For a trapped gas the theoretical predictions are compared with
experimental results.Comment: 4 pages, 4 figure
Cost benefit analysis of space communications technology: Volume 1: Executive summary
The questions of (1) whether or not NASA should support the further development of space communications technology, and, if so, (2) which technology's support should be given the highest priority are addressed. Insofar as the issues deal principally with resource allocation, an economics perspective is adopted. The resultant cost benefit methodology utilizes the net present value concept in three distinct analysis stages to evaluate and rank those technologies which pass a qualification test based upon probable (private sector) market failure. User-preference and technology state-of-the-art surveys were conducted (in 1975) to form a data base for the technology evaluation. The program encompassed near-future technologies in space communications earth stations and satellites, including the noncommunication subsystems of the satellite (station keeping, electrical power system, etc.). Results of the research program include confirmation of the applicability of the methodology as well as a list of space communications technologies ranked according to the estimated net present value of their support (development) by NASA
- …