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3Dipartimento di Fisica, Università di Trento and BEC-INFM, I-38050 Povo, Italy
(Received 19 December 2005; published 18 August 2006)

We develop a time-dependent mean-field theory to investigate the released momentum distribution and
the released energy of an ultracold Fermi gas in the BCS-BEC crossover after the scattering length has
been set to zero by a fast magnetic-field ramp. For a homogeneous gas we analyze the nonequilibrium
dynamics of the system as a function of the interaction strength and of the ramp speed. For a trapped gas
the theoretical predictions are compared with experimental results.
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The study of the momentum distribution of an atomic
gas in the quantum-degenerate regime carries a wealth of
information on the role played by interactions and on the
existence of a superfluid order parameter. As an example,
in a homogeneous Bose gas at T � 0, the momentum
distribution nk exhibits a singular behavior at small wave
vectors nk ’ mc=2@k, which is determined by the excita-
tion of phonons propagating with the speed of sound c and
is a signature of Bose-Einstein condensation (BEC) [1]. In
a corresponding system of fermions with attractive inter-
actions, the broadening of the Fermi surface is instead a
consequence of the formation of pairs and of the presence
of a superfluid gap [2]. This latter effect becomes dramatic
in the BCS-BEC crossover region where the pairing gap
is of the order of the Fermi energy of the system [3]. The
second moment of the momentum distribution defines
the kinetic energy of the system: Ekin �

P
knk@

2k2=�2m�,
wherem is the mass of the atoms. This quantity, which also
plays a central role in the many-body description of ultra-
cold gases, is very sensitive to the large-k behavior of nk.
For interacting systems the dominant contribution to Ekin

comes from short-range correlations, where the details of
the interatomic potential are relevant. In the case of a zero-
range potential it is well known that the momentum distri-
bution decreases like 1=k4 for large momenta and the
kinetic energy diverges in dimensionality greater than one.
This unphysical divergence can be understood recalling
that the zero-range approximation is only correct to de-
scribe the region of momenta k� 1=r0, where r0 denotes
the physical range of interactions [4]. This behavior of the
kinetic energy is a general feature of quantum-degenerate
gases, where interactions are well described by the s-wave
scattering length a, holding both for fermions and bosons
and for repulsive and attractive interactions [5].

The physics of ultracold gases is characterized by a clear
separation of energy scales: the energy scale associated
with the two-body physics as fixed, for example, by
@

2=mr2
0 � 10 mK, being r0 � 100a0 the typical interaction

length of the van der Waals potential, and the energy scale
associated with the many-body physics as determined by
the typical Fermi energy �F � 1�K. This separation of

energy scales provides a very large range of time scales for
which the dynamical process can be safely considered fast
(diabatic) as the many-body dynamics is concerned and
slow (adiabatic) with respect to the two-body dynamics.
This feature is exploited in recent experiments aiming to
measure the momentum distribution, which are based on
the ballistic expansion of the cloud after the scattering
length has been quickly set to zero by a fast magnetic-field
ramp [6,7]. These experiments give access to the released
momentum distribution, which is a nonequilibrium quan-
tity defined as the momentum distribution of the system
after the scattering length has been rapidly ramped to a �
0. Provided the time scale of the ramp satisfies the con-
ditions given above, the released momentum distribution
does not depend on the detailed structure of the interatomic
potential, being in this sense universal, but it does depend
on the time scale of the ramping process.

In this Letter we investigate the behavior of a Fermi gas
at T � 0 in the BCS-BEC crossover. We calculate the
released momentum distribution and its second moment
for a homogeneous system as a function of the interaction
strength 1=�kFa�, where kF is the Fermi wave vector. For
harmonically trapped systems we give an explicit predic-
tion of the column integrated released momentum distri-
bution and of the released energy for values of the
interaction strength ranging from the BCS to the BEC
regime, and we compare our results with recently obtained
experimental data [7].

We consider an unpolarized two-component Fermi gas
with equal populations of the " and # components: N" �
N# � N=2, where N is the total number of particles. We
determine the dynamical evolution of such a system start-
ing from the equations of motion for the nonequilibrium
density matrices of the " and # components interacting
through the Hamiltonian

 H �
X
�

Z
dx y��x�

�
�
@

2r2
x

2m

�
 ��x�

�
Z
dxdx0 y" �x� 

y
# �x

0�V�x;x0� #�x0� "�x�; (1)
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where ��" , # labels the spins and V�x; x0� is the inter-
action potential to be specified later. The correlations
are treated within a mean-field approach [3], where they
are expressed in terms of the normal GN��x;x0; t� �
h y��x0; t� ��x; t�i and the anomalous GA�x;x0; t� �
h #�x0; t� "�x; t�i density matrices. By neglecting the
Hartree terms one obtains the following coupled equations
of motion [2] [from now on GN"�x;x0; t� � GN#�x;x0; t� �
GN�x;x0; t�]

 i@
dGN�x;x0; t�

dt
�

�
�
@

2r2
x

2m
�

@
2r2

x0

2m

�
GN�x;x0; t�

�
Z
dx00	V�x;x00�

� V�x00;x0�
GA�x;x00; t�G�A�x
00;x0; t�

(2)

and

 i@
dGA�x;x0;t�

dt
�

�
�
@

2r2
x

2m
�
@

2r2
x0

2m

�
GA�x;x0;t�

�V�x;x0�GA�x;x0;t�

�
Z
dx00V�x;x00�GN�x0;x00;t�GA�x;x00;t�

�
Z
dx00V�x;x00�GN�x;x00;t�GA�x00;x0;t�:

(3)

The short-range nature of the interaction potential V�x;x0�
can be properly described through the regularized pseudo-
potential V�r� � �4�a@2=m���r��@=@r�r [8,9], with a the
s-wave scattering length and r � jx� x0j. During the
magnetic-field ramp the value of the scattering length
changes in time according to the relation

 a�t� � abg

�
1�

�

B�t� � B0

�
; (4)

valid close to the Feshbach resonance. In the above ex-
pression, abg denotes the background scattering length, B0

and � the position and width of the resonance, respectively,
and B�t� is the instantaneous value of the magnetic field.
Under the dynamical conditions that we are considering,
where the nonequilibrium processes take place over a time
scale adiabatic with respect to the two-particle problem
and diabatic with respect to the many-particle system, the
time evolution does not depend on the details of the short-
range potential and the effect of interactions results in a
boundary condition at short length scales

 

�
	rGA�r; t�
0

rGA�r; t�

�
r�0
� �

1

a�t�
; (5)

where the prime indicates the derivative with respect
to r, which must be fulfilled at any time t. For small values
of r, many-body effects in Eq. (3) can be neglected and
the boundary condition (5) corresponds to the one of

the two-body problem with the pseudopotential V�r�,
where GA�r; t� is the wave function of the relative mo-
tion. We notice that the contact boundary condition
limrij!0@�rij��=@rij=�rij�� � �1=a, where rij is the dis-
tance between particles i and j, holds in general for the
exact many-body wave function � if the effective range of
the potential can be neglected [10].

In the case of a homogeneous system and by using the
pseudopotential approximation for the interatomic poten-
tial V�x;x00� and the boundary condition (5), Eqs. (2) and
(3) can be greatly simplified. One obtains the following
coupled equations for ~GN�r; t� � rGN�r; t� and ~GA�r; t� �
rGA�r; t�:

 i@
d ~GN�r; t�

dt
�

8�@2

m
i=� ~GA�r; t�	 ~G

�
A�t�
r�0�; (6)

 i@
d ~GA�r; t�

dt
� �

@
2@2

m@r2
~GA�r; t� �

8�@2

m
~GN�r; t�

� 	 ~GA�t�
r�0; (7)

with the boundary condition 	� ~GA�
0= ~GA
r�0 � �1=a�t�.

Notice that interaction effects only enter Eqs. (6) and (7)
through the boundary condition (5). We determine the ini-
tial conditions ~GN�r; t � 0� and ~GA�r; t � 0� of Eqs. (6)
and (7) from the mean-field gap and number equations
corresponding to the equilibrium state of the gas with the
initial value of the scattering length a�0�

 n �
Z 1

0

dkk2

2�2

�
1�

�k �����������������������������������
��k ���

2 � �2
p

�
; (8)

 

m

4�@2a�0�
�
Z 1

0

dkk2

4�2

�
1

�k
�

1���������������������������������
��k ���2 ��2

p
�
; (9)

where �k � @
2k2=2m, � is the chemical potential, � the

superfluid gap, and n � n" � n# the total particle den-
sity. The functions ~GN and ~GA are then calculated from
the Bogoliubov quasiparticle amplitudes u2

k � 1� v2
k �

	1� ��k ���=
���������������������������������
��k ���

2 � �2
p


=2, as ~GN�r; t � 0� �R
1
0 dkk sin�kr�v2

k=�2�
2�, and ~GA�r; t � 0� �

R
1
0 dkk�

sin�kr�ukvk=�2�2�. We solve the dynamic Eqs. (6) and
(7) with the initial conditions ~GN�r; t � 0�, ~GA�r; t � 0�
given above and a�t� given by (4) from the initial time t �
0 to the final time t � tf, where a�tf� � 0. The released
momentum distribution is then calculated from the Fourier
transform of GN at the time t � tf

 nk�t � tf� �
Z
dreikrGN�r; t � tf�: (10)

The results for the homogeneous gas are shown in Figs. 1
and 2. In Fig. 1 we compare the equilibrium momentum
distribution nk�t � 0� in the unitary limit, 1=	kFa�0�
 � 0,
with the corresponding released momentum distribution
(10) calculated for a magnetic-field ramp rate of 2 �s=G.
For values of k & kF the shape of the distribution does not
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change appreciably. The large-k tail is instead greatly sup-
pressed (as is shown in the inset) and the second moment of
the released nk is a convergent integral. Notice that the fast
decaying tail of the released nk affects the normalization
constant. In Fig. 2 we show the results of the released
energy as a function of the initial interaction strength
1=	kFa�0�
 for two different values of the magnetic-field
ramp rate. We notice that on the BCS side of the crossover,
kFa�0�< 0, the dependence on the ramp rate is weak,
while on the BEC side, kFa�0�> 0, a faster ramp produces
a significantly larger energy. In the BEC regime the system
is in fact more sensitive to changes of the high-energy
tail of the momentum distribution. Deep in the BCS re-
gime, �1=	kFa�0�
 � 1, the released energy reduces to
the kinetic energy of the noninteracting gas E0

kin � 3�F=5.
In the opposite BEC regime, �1=	kFa�0�
 � �1, many-

body effects become less relevant and the released energy
coincides with the one obtained from the dissociation of
the molecular state [7] (see Fig. 4).

In order to make quantitative comparison with the ex-
periment, we now consider harmonically trapped systems
confined by the external potential Vext�r� � m�!2

xx2 �

!2
yy2 �!2

zz2�=2. Within the local density approximation

(LDA) we introduce the rescaled spatial variables ~x �

x
�������������
!x=!

p
, ~y � y

�������������
!y=!

q
and ~z � x

�������������
!z=!

p
, so that the con-

fining potential becomes isotropic in the new coordi-
nates Vext�r� � m!2 ~R2=2, where ! � �!x!y!z�

1=3 is
the geometric average of the harmonic oscillator fre-
quencies. For each spatial slice ~R � �~x� ~x0�=2, Eqs. (8)
and (9) are solved for the local chemical potential�local� ~R�
and the local density n� ~R�, subject to the normalizationR
d3 ~Rn� ~R� � N and the local equilibrium condition � �

�local� ~R� � Vext� ~R�. Each slice is then evolved according
to Eqs. (6) and (7) with initial conditions ~GN�~r; ~R; t � 0�
and ~GA�~r; ~R; t � 0�, where ~r � ~x� ~x0 is the relative coor-
dinate. The released momentum distribution is obtained
fromGN�~r; ~R; t� at the final time t � tf through the integral
over the rescaled coordinates ~R and ~r,

 n�k; t � tf� �
Z
d3 ~R

Z
d3~reik~rGN�r; R; t � tf�: (11)

In Fig. 3 we compare the column integrated released mo-
mentum distribution n�

����������������
k2
x � k

2
y

q
; tf� �

R
1
�1 dkzn�k; tf�,

calculated from Eq. (11), with the experimental results
obtained in Ref. [7]. The values of the interaction strength
are 1=	k0

Fa�0�
 � �71,�0:66, 0, and 0.59 as in the experi-
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FIG. 1 (color online). Released momentum distribution (solid
lines) of a homogeneous gas at unitarity, 1=	kFa�0�
 � 0, for a
ramp rate of 2 �s=G. The large-k behavior of nk weighted by k4

is shown in the inset, where the dotted line corresponds to the
equilibrium asymptotic value ��=2�F�

2. The initial equilibrium
distribution is also shown (dashed lines).
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FIG. 2 (color online). Released energy of a homogeneous gas
as a function of the interaction strength for two values of the
ramp rate. The energy is normalized to the kinetic energy of the
noninteracting gas E0

kin � 3�F=5.
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FIG. 3 (color online). Column integrated released momentum
distribution of a harmonically trapped gas. From top to bottom,
the lines correspond to 1=	k0

Fa�0�
 � �71 (blue), 1=	k0
Fa�0�
 �

�0:66 (green), 1=	k0
Fa�0�
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 � 0:59
(black). The magnetic-field ramp rate is 2 �s=G. The symbols
correspond to the experimental results of Ref. [7]. Inset: Results
for 1=	k0

Fa�0�
 � 0 (top) and 0.59 (bottom) weighted by k3.
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ments and the magnetic-field ramp rate is 2 �s=G. The
agreement is quite good for the momentum distribution on
the BEC side of the resonance and in the unitary limit (see
the inset of Fig. 3 to compare the large-k tails of the
distributions). For 1=	k0

Fa�0�
 � �0:66 the experimental
n�k� is more broadened because the Hartree mean-field
term, which enhances the shrinking of the cloud due to
attraction, is neglected in the calculation. In Fig. 4 we show
the results for the released energy of the inhomogeneous
gas as a function of the interaction strength 1=	k0

Fa�0�
,
where k0

F � �24N�1=6
�������������
m!=@

p
is the Fermi wave vector in

the center of the trap corresponding to a noninteracting gas.
Experimental results from Ref. [7] and theoretical results
obtained by solving the time-dependent Schrödinger
equation for the molecular state (see [7]) are also shown
in Fig. 4. The mean-field calculation reduces to the mo-
lecular two-body result only in the deep BEC regime,
�1=k0

Fa�0� � �1, and agrees better with the experimen-
tal results. Given that there are no adjustable parameters,
theory and experiment are in reasonable agreement over
the whole crossover region. In the unitary limit the present
mean-field approach is known to overestimate the equilib-
rium energy per particle compared to more advanced
quantum Monte Carlo calculations [11]. This might be
the reason for the larger energy obtained around resonance
compared to the observed one. On the deep BEC side, the
underestimate may instead be due to the effect of finite
temperature on the experimental data in that regime.
Finally, on the BCS side of the resonance, the present
approach neglects the mean-field Hartree term and we
expect a faster convergence to the kinetic energy of the

noninteracting gas E0
kin � 3�0

F=8, where �0
F � �@k

0
F�

2=2m,
as �1=k0

Fa�0� becomes large.
In conclusion, we have developed a new theoretical

approach which allows one to calculate the released mo-
mentum distribution, released energy, and, in principle,
other nonequilibrium properties of a superfluid Fermi gas
if the scattering length is set to zero using a fast magnetic-
field ramp. The approach is fully time dependent, accounts
at the mean-field level of many-body pairing effects, and
can be applied for any value of the interaction strength
along the BCS-BEC crossover. For harmonically trapped
systems our theoretical predictions qualitatively reproduce
the recently obtained experimental results of Ref. [7] with-
out fitting parameters. The quantitative discrepancies
which are mainly found around resonance indicate the
need to go beyond the mean-field theory for describing
the gas in the crossover region.
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Phys. Rev. B 55, 15 153 (1997).

[4] E. E. Nikitin and L. P. Pitaevskii, cond-mat/0508684.
[5] At T � 0 for a Bose gas with repulsive interactions one

finds nk ’ 1=�16k4�4� at large momenta, where � �
1=

������������
8�na
p

is the healing length. For a Fermi gas one finds
instead nk ’ m

2�2=�@4k4�, where � is the BCS gap, for
attractive interactions and nk ’ �4akF=3��2�kF=k�

4 for
repulsive interactions [V. A. Belyakov, Sov. Phys. JETP
13, 850 (1961)].

[6] T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003).
[7] C. A. Regal et al., Phys. Rev. Lett. 95, 250404 (2005).
[8] K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957);

T. D. Lee, K. Huang, and C. N. Yang, ibid. 106, 1135
(1957).

[9] G. Bruun, Y. Castin, R. Dum, and K. Burnett, Eur.
Phys. J. D 7, 433 (1999).

[10] H. Bethe and R. Peierls, Proc. R. Soc. A 148, 146 (1935).
[11] J. Carlson, S.-Y. Chang, V. R. Pandharipande, and K. E.

Schmidt, Phys. Rev. Lett. 91, 050401 (2003); G. E.
Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,
Phys. Rev. Lett. 93, 200404 (2004).

−1 −0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

−1/(k
F
(0)a)

E
re

l/E
0 ki

n

FIG. 4 (color online). Released energy of a harmonically
trapped gas as a function of the interaction strength 1=	k0

Fa�0�

for a ramp rate of 2 �s=G (upper blue line). The lower (green)
line is the corresponding result solving the two-body problem
associated with the molecular state. The symbols are the experi-
mental results from Ref. [7]. The energy is normalized to the
kinetic energy of the noninteracting gas E0

kin � 3�0
F=8.

PRL 97, 070404 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
18 AUGUST 2006

070404-4


