248 research outputs found
Flexible manipulator control experiments and analysis
Modeling and control design for flexible manipulators, both from an experimental and analytical viewpoint, are described. From the application perspective, an ongoing effort within the laboratory environment at the Ohio State University, where experimentation on a single link flexible arm is underway is described. Several unique features of this study are described here. First, the manipulator arm is slewed by a direct drive dc motor and has a rigid counterbalance appendage. Current experimentation is from two viewpoints: (1) rigid body slewing and vibration control via actuation with the hub motor, and (2) vibration suppression through the use of structure-mounted proof-mass actuation at the tip. Such an application to manipulator control is of interest particularly in design of space-based telerobotic control systems, but has received little attention to date. From an analytical viewpoint, parameter estimation techniques within the closed-loop for self-tuning adaptive control approaches are discussed. Also introduced is a control approach based on output feedback and frequency weighting to counteract effects of spillover in reduced-order model design. A model of the flexible manipulator based on experimental measurements is evaluated for such estimation and control approaches
The effect of dust obscuration in RR Tel on optical and IR long-term photometry and Fe II emission lines
Infrared and optical photometric and spectroscopic observations of the
symbiotic nova RR Tel are used to study the effects and properties of dust in
symbiotic binaries containing a cool Mira component, as well as showing
"obscuration events" of increased absorption, which are typical for such Miras.
A set of photometric observations of the symbiotic nova RR Tel in different
wavelength bands - visual from 1949 to 2002 and near-infrared (JHKL) from 1975
to 2002 - are presented. The variability due to the normal Mira pulsation was
removed from the JHKL data, which were then compared with the AAVSO visual
light curve. The changes of the Fe II emission line fluxes during the 1996-2000
obscuration episode were studied in the optical spectra taken with the
Anglo-Australian telescope.
We discuss the three periods during which the Mira component was heavily
obscured by dust as observed in the different wavelength bands. A change in the
correlations of J with other infrared magnitudes was observed with the colour
becoming redder after JD2446000. Generally, J-K was comparable, while K-L was
larger than typical values for single Miras. A distance estimate of 2.5 kpc,
based on the IR data, is given. A larger flux decrease for the permitted than
for the forbidden Fe II lines, during the obscuration episode studied, has been
found. There is no evidence for other correlations with line properties, in
particular with wavelength, which suggests obscuration due to separate
optically thick clouds in the outer layers.Comment: 19 pages, 11 figures, 3 table
The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer
The external electric field deforms flaccid phospholipid vesicles into
spheroidal bodies, with the rotational axis aligned with its direction.
Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the
deformation is typically prolate, while increasing the frequency to the 10 kHz
range changes the deformation to oblate. We attempt to explain this behaviour
with a theoretical model, based on the minimization of the total free energy of
the vesicle. The energy terms taken into account include the membrane bending
energy and the energy of the electric field. The latter is calculated from the
electric field via the Maxwell stress tensor, where the membrane is modelled as
anisotropic lossy dielectric. Vesicle deformation in response to varying
frequency is calculated numerically. Using a series expansion, we also derive a
simplified expression for the deformation, which retains the frequency
dependence of the exact expression and may provide a better substitute for the
series expansion used by Winterhalter and Helfrich, which was found to be valid
only in the limit of low frequencies. The model with the anisotropic membrane
permittivity imposes two constraints on the values of material constants:
tangential component of dielectric permittivity tensor of the phospholipid
membrane must exceed its radial component by approximately a factor of 3; and
the membrane conductivity has to be relatively high, approximately one tenth of
the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens.
Matte
Diagnostic accuracy of haemophilia early arthropathy detection with ultrasound (HEAD-US): A comparative magnetic resonance imaging (MRI) study
Background. Repeated haemarthroses affect approximately 90% of patients with severe haemophilia and lead to progressive arthropathy, which is the main cause of morbidity in these patients. Diagnostic imaging can detect even subclinical arthropathy changes and may impact prophylactic treatment. Magnetic resonance imagining (MRI) is generally the gold standard tool for precise evaluation of joints, but it is not easily feasible in regular follow-up of patients with haemophilia. The development of the standardized ultrasound (US) protocol for detection of early changes in haemophilic arthropathy (HEAD-US) opened new perspectives in the use of US in management of these patients. The HEAD-US protocol enables quick evaluation of the six mostly affected joints in a single study. The aim of this prospective study was to determine the diagnostic accuracy of the HEAD-US protocol for the detection and quantification of haemophilic arthropathy in comparison to the MRI. Patients and methods. The study included 30 patients with severe haemophilia. We evaluated their elbows, ankles and knees (overall 168 joints) by US using the HEAD-US protocol and compared the results with the MRI using the International Prophylaxis Study Group (IPSG) MRI score. Results. The results showed that the overall HEAD-US score correlated very highly with the overall IPSG MRI score (r = 0.92). Correlation was very high for the evaluation of the elbows and knees (r 48 0.95), and slightly lower for the ankles (r 48 0.85). Conclusions. HEAD-US protocol proved to be a quick, reliable and accurate method for the detection and quantification of haemophilic arthropathy
An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Sub-Solar Water Abundance
We present an optical-to-infrared transmission spectrum of the inflated
sub-Saturn KELT-11b measured with the Transiting Exoplanet Survey Satellite
(TESS), the Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectroscopic
grism, and the Spitzer Space Telescope (Spitzer) at 3.6 m, in addition to
a Spitzer 4.5 m secondary eclipse. The precise HST transmission spectrum
notably reveals a low-amplitude water feature with an unusual shape. Based on
free retrieval analyses with varying molecular abundances, we find strong
evidence for water absorption. Depending on model assumptions, we also find
tentative evidence for other absorbers (HCN, TiO, and AlO). The retrieved water
abundance is generally solar (0.001--0.7 solar
over a range of model assumptions), several orders of magnitude lower than
expected from planet formation models based on the solar system metallicity
trend. We also consider chemical equilibrium and self-consistent 1D
radiative-convective equilibrium model fits and find they too prefer low
metallicities (, consistent with the free retrieval
results). However, all the retrievals should be interpreted with some caution
since they either require additional absorbers that are far out of chemical
equilibrium to explain the shape of the spectrum or are simply poor fits to the
data. Finally, we find the Spitzer secondary eclipse is indicative of full heat
redistribution from KELT-11b's dayside to nightside, assuming a clear dayside.
These potentially unusual results for KELT-11b's composition are suggestive of
new challenges on the horizon for atmosphere and formation models in the face
of increasingly precise measurements of exoplanet spectra.Comment: Accepted to The Astronomical Journal. 31 pages, 20 figures, 7 table
Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study
<p>Abstract</p> <p>Background</p> <p>When a cell is exposed to a time-varying magnetic field, this leads to an induced voltage on the cytoplasmic membrane, as well as on the membranes of the internal organelles, such as mitochondria. These potential changes in the organelles could have a significant impact on their functionality. However, a quantitative analysis on the magnetically-induced membrane potential on the internal organelles has not been performed.</p> <p>Methods</p> <p>Using a two-shell model, we provided the first analytical solution for the transmembrane potential in the organelle membrane induced by a time-varying magnetic field. We then analyzed factors that impact on the polarization of the organelle, including the frequency of the magnetic field, the presence of the outer cytoplasmic membrane, and electrical and geometrical parameters of the cytoplasmic membrane and the organelle membrane.</p> <p>Results</p> <p>The amount of polarization in the organelle was less than its counterpart in the cytoplasmic membrane. This was largely due to the presence of the cell membrane, which "shielded" the internal organelle from excessive polarization by the field. Organelle polarization was largely dependent on the frequency of the magnetic field, and its polarization was not significant under the low frequency band used for transcranial magnetic stimulation (TMS). Both the properties of the cytoplasmic and the organelle membranes affect the polarization of the internal organelle in a frequency-dependent manner.</p> <p>Conclusions</p> <p>The work provided a theoretical framework and insights into factors affecting mitochondrial function under time-varying magnetic stimulation, and provided evidence that TMS does not affect normal mitochondrial functionality by altering its membrane potential.</p
The spectral energy distribution of D-type symbiotic stars: the role of dust shells
We have collected continuum data of a sample of D-type symbiotic stars. By
modelling their spectral energy distribution in a colliding-wind theoretical
scenario we have found the common characteristics to all the systems: 1) at
least two dust shells are clearly present, one at \sim 1000 K and the other at
\sim 400 K; they dominate the emission in the IR; 2) the radio data are
explained by thermal self-absorbed emission from the reverse shock between the
stars; while 3) the data in the long wavelength tail come from the expanding
shock outwards the system; 4) in some symbiotic stars, the contribution from
the WD in the UV is directly seen. Finally, 5) for some objects soft X-ray
emitted by bremsstrahlung downstream of the reverse-shock between the stars are
predicted. The results thus confirm the validity of the colliding wind model
and the important role of the shocks. The comparison of the fluxes calculated
at the nebula with those observed at Earth reveals the distribution throughout
the system of the different components, in particular the nebulae and the dust
shells. The correlation of shell radii with the orbital period shows that
larger radii are found at larger periods. Moreover, the temperatures of the
dust shells regarding the sample are found at 1000 K and <=400 K, while, in the
case of late giants, they spread more uniformly throughout the same range.Comment: 14 pages, 7 figures, 5 tables. Accepted for publication in MNRA
Physics of the Riemann Hypothesis
Physicists become acquainted with special functions early in their studies.
Consider our perennial model, the harmonic oscillator, for which we need
Hermite functions, or the Laguerre functions in quantum mechanics. Here we
choose a particular number theoretical function, the Riemann zeta function and
examine its influence in the realm of physics and also how physics may be
suggestive for the resolution of one of mathematics' most famous unconfirmed
conjectures, the Riemann Hypothesis. Does physics hold an essential key to the
solution for this more than hundred-year-old problem? In this work we examine
numerous models from different branches of physics, from classical mechanics to
statistical physics, where this function plays an integral role. We also see
how this function is related to quantum chaos and how its pole-structure
encodes when particles can undergo Bose-Einstein condensation at low
temperature. Throughout these examinations we highlight how physics can perhaps
shed light on the Riemann Hypothesis. Naturally, our aim could not be to be
comprehensive, rather we focus on the major models and aim to give an informed
starting point for the interested Reader.Comment: 27 pages, 9 figure
The KELT Follow-Up Network And Transit False-Positive Catalog: Pre-Vetted False Positives For TESS
The Kilodegree Extremely Little Telescope (KELT) project has been conducting a photometric survey of transiting planets orbiting bright stars for over 10 years. The KELT images have a pixel scale of ~23\u27\u27 pixel⁻¹—very similar to that of NASA\u27s Transiting Exoplanet Survey Satellite (TESS)—as well as a large point-spread function, and the KELT reduction pipeline uses a weighted photometric aperture with radius 3\u27. At this angular scale, multiple stars are typically blended in the photometric apertures. In order to identify false positives and confirm transiting exoplanets, we have assembled a follow-up network (KELT-FUN) to conduct imaging with spatial resolution, cadence, and photometric precision higher than the KELT telescopes, as well as spectroscopic observations of the candidate host stars. The KELT-FUN team has followed-up over 1600 planet candidates since 2011, resulting in more than 20 planet discoveries. Excluding ~450 false alarms of non-astrophysical origin (i.e., instrumental noise or systematics), we present an all-sky catalog of the 1128 bright stars (6 \u3c V \u3c 13) that show transit-like features in the KELT light curves, but which were subsequently determined to be astrophysical false positives (FPs) after photometric and/or spectroscopic follow-up observations. The KELT-FUN team continues to pursue KELT and other planet candidates and will eventually follow up certain classes of TESS candidates. The KELT FP catalog will help minimize the duplication of follow-up observations by current and future transit surveys such as TESS
Treatment of cancer with cryochemotherapy
Cryosurgery employs freezing to destroy solid tumours. However, frozen cells can survive and cause cancer recurrence. Bleomycin, an anticancer drug with a huge intrinsic cytotoxicity is normally not very effective because it is nonpermeant. We report that freezing facilitates bleomycin penetration into cells making it toxic to cryosurgery surviving cells at concentrations that are non-toxic systemically
- …