315 research outputs found

    Discovering Business Area Effects to Process Mining Analysis Using Clustering and Influence Analysis

    Full text link
    A common challenge for improving business processes in large organizations is that business people in charge of the operations are lacking a fact-based understanding of the execution details, process variants, and exceptions taking place in business operations. While existing process mining methodologies can discover these details based on event logs, it is challenging to communicate the process mining findings to business people. In this paper, we present a novel methodology for discovering business areas that have a significant effect on the process execution details. Our method uses clustering to group similar cases based on process flow characteristics and then influence analysis for detecting those business areas that correlate most with the discovered clusters. Our analysis serves as a bridge between BPM people and business, people facilitating the knowledge sharing between these groups. We also present an example analysis based on publicly available real-life purchase order process data.Comment: 12 pages. Paper accepted in 23rd International Conference on Business Information Systems (BIS 2020) to be published in a proceedings edition of the Lecture Notes in Business Information Processin

    On the Portability of Prolog Applications

    Get PDF
    The non-portability of Prolog programs is widely considered one of the main problems facing Prolog programmers. Although since 1995, the core of the language is covered by the ISO standard 13211-1, this standard has not been sufficient to support large Prolog applications. As an approach to address this problem, since 2007, YAP and SWI-Prolog have established a basic compatibility framework. The aim of the framework is running the same code on Edinburgh-based Prolog systems rather than having to migrate an application. This article describes the implementation and evaluates this framework by studying how it can be used on a number of libraries and an important application. © 2011 Springer-Verlag

    Conformance checking using activity and trace embeddings

    Get PDF
    Conformance checking describes process mining techniques used to compare an event log and a corresponding process model. In this paper, we propose an entirely new approach to conformance checking based on neural network-based embeddings. These embeddings are vector representations of every activity/task present in the model and log, obtained via act2vec, a Word2vec based model. Our novel conformance checking approach applies the Word Mover’s Distance to the activity embeddings of traces in order to measure fitness and precision. In addition, we investigate a more efficiently calculated lower bound of the former metric, i.e. the Iterative Constrained Transfers measure. An alternative method using trace2vec, a Doc2vec based model, to train and compare vector representations of the process instances themselves is also introduced. These methods are tested in different settings and compared to other conformance checking techniques, showing promising results

    A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II

    Get PDF
    During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning

    Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    Get PDF
    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention

    Intensive enteral nutrition is ineffective for individuals with severe alcoholic hepatitis treated with corticosteroids.

    Full text link
    peer reviewedBACKGROUND & AIMS: Severe alcoholic hepatitis (AH) is a lifethreatening disease for which adequate oral nutritional support is recommended. We performed a randomized controlled trial to determine whether the combination of corticosteroid and intensive enteral nutrition therapy is more effective than corticosteroid therapy alone in patients with severe AH. METHODS: We enrolled 136 heavy consumers of alcohol (age, 18–75 y) with recent onset of jaundice and biopsy-proven severe AH in our study, performed at 18 hospitals in Belgium and 2 in France, from February 2010 through February 2013. Subjects were assigned randomly (1:1) to groups that received either intensive enteral nutrition plus methylprednisolone or conventional nutrition plus methylprednisolone (controls). In the intensive enteral nutrition group, enteral nutrition was given via feeding tube for 14 days. The primary end point was patient survival for 6 months. RESULTS: In an intention-to-treat analysis, we found no significant difference between groups in 6-month cumulative mortality: 44.4% of patients died in the intensive enteral nutrition group (95% confidence interval [CI], 32.2%–55.9%) and 52.1% of controls died (95% CI, 39.4%– 63.4%) (P ¼ .406). The enteral feeding tube was withdrawn prematurely from 48.5% of patients, and serious adverse events considered to be related to enteral nutrition occurred in 5 patients. Regardless of group, a greater proportion of patients with a daily calorie intake less than 21.5 kcal/kg/day died (65.8%; 95% CI, 48.8–78.4) than patients with a higher intake of calories (33.1%; 95% CI, 23.1%–43.4%) (P < .001). CONCLUSIONS: In a randomized trial of patients with severe AH treated with corticosteroids, we found that intensive enteral nutrition was difficult to implement and did not increase survival. However, low daily energy intake was associated with greater mortality, so adequate nutritional intake should be a main goal for treatment

    Development and Implementation of a Registry of Patients Attending Multidisciplinary Pain Treatment Clinics: The Quebec Pain Registry

    Get PDF
    The Quebec Pain Registry (QPR) is a large research database of patients suffering from various chronic pain (CP) syndromes who were referred to one of five tertiary care centres in the province of Quebec (Canada). Patients were monitored using common demographics, identical clinical descriptors, and uniform validated outcomes. This paper describes the development, implementation, and research potential of the QPR. Between 2008 and 2013, 6902 patients were enrolled in the QPR, and data were collected prior to their first visit at the pain clinic and six months later. More than 90% of them (mean age ± SD: 52.76 ± 4.60, females: 59.1%) consented that their QPR data be used for research purposes. The results suggest that, compared to patients with serious chronic medical disorders, CP patients referred to tertiary care clinics are more severely impaired in multiple domains including emotional and physical functioning. The QPR is also a powerful and comprehensive tool for conducting research in a “real-world” context with 27 observational studies and satellite research projects which have been completed or are underway. It contains data on the clinical evolution of thousands of patients and provides the opportunity of answering important research questions on various aspects of CP (or specific pain syndromes) and its management

    Fluorescence Polarization and Fluctuation Analysis Monitors Subunit Proximity, Stoichiometry, and Protein Complex Hydrodynamics

    Get PDF
    Förster resonance energy transfer (FRET) microscopy is frequently used to study protein interactions and conformational changes in living cells. The utility of FRET is limited by false positive and negative signals. To overcome these limitations we have developed Fluorescence Polarization and Fluctuation Analysis (FPFA), a hybrid single-molecule based method combining time-resolved fluorescence anisotropy (homo-FRET) and fluorescence correlation spectroscopy. Using FPFA, homo-FRET (a 1–10 nm proximity gauge), brightness (a measure of the number of fluorescent subunits in a complex), and correlation time (an attribute sensitive to the mass and shape of a protein complex) can be simultaneously measured. These measurements together rigorously constrain the interpretation of FRET signals. Venus based control-constructs were used to validate FPFA. The utility of FPFA was demonstrated by measuring in living cells the number of subunits in the α-isoform of Venus-tagged calcium-calmodulin dependent protein kinase-II (CaMKIIα) holoenzyme. Brightness analysis revealed that the holoenzyme has, on average, 11.9±1.2 subunit, but values ranged from 10–14 in individual cells. Homo-FRET analysis simultaneously detected that catalytic domains were arranged as dimers in the dodecameric holoenzyme, and this paired organization was confirmed by quantitative hetero-FRET analysis. In freshly prepared cell homogenates FPFA detected only 10.2±1.3 subunits in the holoenzyme with values ranging from 9–12. Despite the reduction in subunit number, catalytic domains were still arranged as pairs in homogenates. Thus, FPFA suggests that while the absolute number of subunits in an auto-inhibited holoenzyme might vary from cell to cell, the organization of catalytic domains into pairs is preserved

    A Significant but Rather Mild Contribution of T286 Autophosphorylation to Ca2+/CaM-Stimulated CaMKII Activity

    Get PDF
    Autophosphorylation of the Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) at T286 generates partially Ca(2+)/CaM-independent "autonomous" activity, which is thought to be required for long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning and memory. A requirement for T286 autophosphorylation also for efficient Ca(2+)/CaM-stimulated CaMKII activity has been described, but remains controversial.In order to determine the contribution of T286 autophosphorylation to Ca(2+)/CaM-stimulated CaMKII activity, the activity of CaMKII wild type and its phosphorylation-incompetent T286A mutant was compared. As the absolute activity can vary between individual kinase preparations, the activity was measured in six different extracts for each kinase (expressed in HEK-293 cells). Consistent with measurements on purified kinase (from a baculovirus/Sf9 cell expression system), CaMKII T286A showed a mildly but significantly reduced rate of Ca(2+)/CaM-stimulated phosphorylation for two different peptide substrates (to ~75-84% of wild type). Additional slower CaMKII autophosphorylation at T305/306 inhibits stimulation by Ca(2+)/CaM, but occurs only minimally for CaMKII wild type during CaM-stimulated activity assays. Thus, we tested if the T286A mutant may show more extensive inhibitory autophosphorylation, which could explain its reduced stimulated activity. By contrast, inhibitory autophosphorylation was instead found to be even further reduced for the T286A mutant under our assay conditions. On a side note, the phospho-T305 antibody showed some basal background immuno-reactivity also with non-phosphorylated CaMKII, as indicated by T305/306A mutants.These results indicate that Ca(2+)/CaM-stimulated CaMKII activity is mildly (~1.2-1.3fold) further increased by additional T286 autophosphorylation, but that this autophosphorylation is not required for the major part of the stimulated activity. This indicates that the phenotype of CaMKII T286A mutant mice is indeed due to the lack of autonomous activity, as the T286A mutant showed no dramatic reduction in stimulated activity

    Primary Postnatal Dorsal Root Ganglion Culture from Conventionally Slaughtered Calves

    Get PDF
    Neurological disorders in ruminants have an important impact on veterinary health, but very few host-specific in vitro models have been established to study diseases affecting the nervous system. Here we describe a primary neuronal dorsal root ganglia (DRG) culture derived from calves after being conventionally slaughtered for food consumption. The study focuses on the in vitro characterization of bovine DRG cell populations by immunofluorescence analysis. The effects of various growth factors on neuron viability, neurite outgrowth and arborisation were evaluated by morphological analysis. Bovine DRG neurons are able to survive for more than 4 weeks in culture. GF supplementation is not required for neuronal survival and neurite outgrowth. However, exogenously added growth factors promote neurite outgrowth. DRG cultures from regularly slaughtered calves represent a promising and sustainable host specific model for the investigation of pain and neurological diseases in bovines
    corecore