225 research outputs found

    Accelerated aging-related transcriptome changes in the female prefrontal cortex

    Get PDF
    Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimers disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD

    Gene expression becomes heterogeneous with age

    No full text

    The analysis of biological diversity of coronaviruses contributes in the early awareness of their zoonotic spreading

    Get PDF
    The recent outbreak of COVID-19 rose a new wave of interest to coronaviruses though the first coronaviruses were discovered in the first half of the 20th century. That time coronaviruses were considered as a quite serious veterinary problem but they were not believed to become highly dangerous for humans. However, such ideas were revised in 2002 when SARS-CoV was transferred to human population in the Southeast Asia assumably from the bats, and later in 2012 when natural focus of the MERS-CoV was discovered in the Arabian countries. Using PubMed, EMBASE, Scopus, and Google scholar, the authors searched for various research and review articles using the combination of terms “coronavirus, Coronaviridae, SARS-CoV, MERS-CoV, SARS-CoV-2, COVID-19, taxonomy”. Due to the increased interest a large number of new Coronaviridae family members was revealed in the first decades of the XXI century. Since then taxonomic structures of coronaviruses underwent significant changes. This review is focused on the need for continued monitoring of the biological diversity of coronaviruses. The structural studies of coronaviruses regardless of the host species may allow us to identify early changes that can affect the evolutionary drift process of a particular HCoV species involved in viral transmission from bats or birds to humans. Taking into account the migratory abilities of bats and especially birds, it is necessary to not only to include coronaviruses in the ecological monitoring programs, but also to expand the scope and depth of environmental and virological monitoring

    Lipidome analysis of milk composition in humans, monkeys, bovids, and pigs

    No full text
    Lipids contained in milk are an essential source of energy and structural materials for a growing neonate. Furthermore, lipids’ long-chain unsaturated fatty acid residues can directly participate in neonatal tissue formation. Here, we used untargeted mass spectrometric measurements to assess milk lipid composition in seven mammalian species: humans, two macaque species, cows, goats, yaks, and pigs

    Human and Chimpanzee Gene Expression Differences Replicated in Mice Fed Different Diets

    Get PDF
    Although the human diet is markedly different from the diets of closely related primate species, the influence of diet on phenotypic and genetic differences between humans and other primates is unknown. In this study, we analyzed gene expression in laboratory mice fed diets typical of humans and of chimpanzees. The effects of human diets were found to be significantly different from that of a chimpanzee diet in the mouse liver, but not in the brain. Importantly, 10% of the genes that differ in their expression between humans and chimpanzee livers differed also between the livers of mice fed the human and chimpanzee diets. Furthermore, both the promoter sequences and the amino acid sequences of these diet-related genes carry more differences between humans and chimpanzees than random genes. Our results suggest that the mouse can be used to study at least some aspects of human-specific traits

    Variation of microRNA expression in the human placenta driven by population identity and sex of the newborn

    Get PDF
    Analysis of lymphocyte cell lines revealed substantial differences in the expression of mRNA and microRNA (miRNA) among human populations. The extent of such population-associated differences in actual human tissues remains largely unexplored. The placenta is one of the few solid human tissues that can be collected in substantial numbers in a controlled manner, enabling quantitative analysis of transient biomolecules such as RNA transcripts. Here, we analyzed microRNA (miRNA) expression in human placental samples derived from 36 individuals representing four genetically distinct human populations: African Americans, European Americans, South Asians, and East Asians. All samples were collected at the same hospital following a unified protocol, thus minimizing potential biases that might influence the results

    Gene expression reversal toward pre-adult levels in the aging human brain and age-related loss of cellular identity

    Get PDF
    It was previously reported that mRNA expression levels in the prefrontal cortex at old age start to resemble pre-adult levels. Such expression reversals could imply loss of cellular identity in the aging brain, and provide a link between aging-related molecular changes and functional decline. Here we analyzed 19 brain transcriptome age-series datasets, comprising 17 diverse brain regions, to investigate the ubiquity and functional properties of expression reversal in the human brain. Across all 19 datasets, 25 genes were consistently up-regulated during postnatal development and down-regulated in aging, displaying an "up-down" pattern that was significant as determined by random permutations. In addition, 113 biological processes, including neuronal and synaptic functions, were consistently associated with genes showing an up-down tendency among all datasets. Genes up-regulated during in vitro neuronal differentiation also displayed a tendency for up-down reversal, although at levels comparable to other genes. We argue that reversals may not represent aging-related neuronal loss. Instead, expression reversals may be associated with aging-related accumulation of stochastic effects that lead to loss of functional and structural identity in neurons. © 2017 The Author(s)
    corecore