58 research outputs found

    Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan

    Get PDF
    Urban ambient air concentrations of 39 aromatic (including benzene, toluene, and xylenes) and aliphatic volatile organic compounds (VOCs) were measured in Yokohama city, Japan. Yokohama city was selected as a case study to assess the amount of VOC released from Industrial area to characterize the ambient air quality with respect to VOC as well as to know the impact of petrochemical storage facilities on local air quality. For this purpose, ambient air samples were collected (from June 2007 to November 2008) at six selected locations which are designated as industrial, residential, or commercial areas. To find out the diurnal variations of VOC, hourly nighttime sampling was carried out for three nights at one of the industrial locations (Shiohama). Samples were analyzed using gas chromatographic system (GC-FID). Results show strong variation between day and nighttime concentrations and among the seasons. Aliphatic fractions were most abundant, suggesting petrochemical storage facilities as the major source of atmospheric hydrocarbons. High concentrations of benzene, toluene, ethyl benzene, and xylene (BTEX) were observed at industrial locations. BTEX showed strong diurnal variation which is attributed to change in meteorology. During our campaign, low ambient VOC concentrations were observed at the residential site

    Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    Get PDF
    The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60˚N–60˚S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest

    Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    Get PDF
    The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60˚N–60˚S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest

    Hydrogen Peroxide in the Troposphere

    Get PDF
    Uloga vodikova peroksida (H2O2) u atmosferskoj kemiji i njegov doprinos u nastanku slobodnih radikala počeli su se proučavati tek posljednjih nekoliko desetljeća. Fotokemijskim reakcijama s ozonom i H2O2 nastaju oksidansi (slobodni radikali) koji mogu oksidirati biomolekule unutar stanica te dovesti do smrti stanica i ozljeda tkiva. Zbog toga se slobodni radikali smatraju uzrokom više od sto bolesti. H2O2 smatra se boljim indikatorom za atmosferski oksidacijski kapacitet od ozona. U atmosferi može biti prisutan u plinovitoj i tekućoj fazi te pokazuje tipične dnevne i sezonske varijacije. Me|utim, zbog skupe i slo`ene opreme, mjerenja H2O2 su rijetka i ograničena na samo nekoliko mjesta u svijetu. Mjerenja u slojevima leda na Grenlandu pokazala su da koncentracije H2O2 rastu posljednjih 200 godina. Značajan porast primijećen je upravo posljednjih dvaju desetljeća, a procjene pokazuju da će i dalje rasti zbog smanjene emisije sumporova dioksida. Mjerenja H2O2 u Hrvatskoj do sada još nisu bila provedena te će uporedo s već postojećim dugogodišnjim rezultatima mjerenja ozona i dušikovih oksida dati uvid u stanje i utjecaj na oksidativni stres.The past few decades saw a rising interest in the role of hydrogen peroxide (H2O2) in atmospheric chemistry and its contribution to the formation of free radicals. Free radicals (oxidants) are formed by photochemical reactions between ozone and H2O2. Free radicals formed within cells can oxidise biomolecules, and this may lead to cell death and tissue injury. For this reason, free radicals are believed to cause more than 100 diseases. H2O2 has been suggested as a better indicator of atmospheric oxidation capacity than ozone. Atmospheric H2O2 can appear in the gas phase or in the aqueous phase. It shows typical diurnal and seasonal variations. However, measurements of H2O2 with expensive and sophisticated equipment are rare and limited to but a few sites in the world. Measurements in Greenland ice cores showed that H2O2 concentrations increased over the last 200 years and most of the increase has occurred over the last 20 years. Evaluations show that concentrations will still rise as a result of decreasing SO2 emission. H2O2 measurements have not been carried out in Croatia until now, and, accompanied by the existing longterm measurements of ozone and nitrogen oxides, they will provide an idea of the oxidative capacity of the atmosphere and its influence on oxidative stress

    Observations of Diurnal to Weekly Variations of Monoterpene-Dominated Fluxes of Volatile Organic Compounds from Mediterranean Forests: Implications for Regional Modeling

    Full text link
    The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests and dune vegetation. In this work, basal emission factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a proton transfer reaction-time-of-flight-mass spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modeled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (community land model, CLM v4.0) of the community earth system model (CESM v1.0). Results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parametrization

    Atmospheric ozone concentration at Athens, Greece. Part I: Surface ozone and its relationship with meteorological parameters

    No full text
    Daily measurements of surface [O-3] and [NOx] from five stations in the Greater Athens Basin, over the period 1987-1988 are used in order to examine the main features of basin-wide O-3-HC-NOx relationships. A simple regression model between the surface ozone concentration and the temperature at the 850 hPa level which was first tested in Los Angeles gave satisfactory results in reproducing the mean monthly ozone variation in Athens, when coefficients extracted from local data were used in the regression equation

    ASSOCIATION OF THE LAMINATED VERTICAL OZONE STRUCTURE WITH THE LOWER-STRATOSPHERIC CIRCULATION

    No full text
    In this study the examination of the role of the atmospheric circulation in the lower stratosphere in relation to the laminated structure of ozone in the subtropical atmosphere is attempted. This analysis is based on the vertical ozone profile data collected by balloon-borne sondes released at Athens, Greece (38-degrees-N, 24-degrees-E). From Stratospheric Ozone Experiment (EASOE) and the Tropospheric Ozone Research (TOR), it is shown that the lamination phenomenon in ozone profiles, especially in the lower stratosphere, was very frequently present. Furthermore, a characteristic minimum of ozone partial pressure at the height region of 14-17 km has also been detected. The occurrence of the laminated ozone structure as well as the appearance or the characteristic ozone minimum, correlated with the general circulation, leads to the following results: (a) The laminated ozone profiles are associated with the north-northwest circulation in the lower stratosphere; and (b) the characteristic ozone minimum is related to the influence of the subtropical jet stream circulation
    corecore