2,062 research outputs found

    Protocols for calibrating multibeam sonar

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 2013-2027, doi:10.1121/1.1869073.Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.Support by the National Science Foundation through Award No. OCE-0002664, NOAA through Grant No. NA97OG0241, and the Cooperative Institute for Climate and Ocean Research (CICOR) through NOAA Contract No. NA17RJ1223 is acknowledged

    Generalized iterated wreath products of cyclic groups and rooted trees correspondence

    Full text link
    Consider the generalized iterated wreath product Zr1≀Zr2≀
≀Zrk\mathbb{Z}_{r_1}\wr \mathbb{Z}_{r_2}\wr \ldots \wr \mathbb{Z}_{r_k} where ri∈Nr_i \in \mathbb{N}. We prove that the irreducible representations for this class of groups are indexed by a certain type of rooted trees. This provides a Bratteli diagram for the generalized iterated wreath product, a simple recursion formula for the number of irreducible representations, and a strategy to calculate the dimension of each irreducible representation. We calculate explicitly fast Fourier transforms (FFT) for this class of groups, giving literature's fastest FFT upper bound estimate.Comment: 15 pages, to appear in Advances in the Mathematical Science

    Muddled Boundaries of Digital Shrines

    Get PDF
    International audienceBased on an online ethnography study of 274 YouTube videos posted during the Virginia Tech or the Newtown massacres, this article discusses how users resort to participatory media during such mediatized events to create a digital spontaneous shrine. The assemblage of this sanctuary on a website hosting billions of user-generated contents is made possible by means of folksonomy and website architecture, and a two-fold social dynamic based on participatory commitment and the institutionalization of a collective entity. Unlike “physical” spontaneous shrines erected in public spaces, these digital shrines connect the bereaved with provocative or outrageous contributions, notably tributes from school shooting fans using participatory media to commemorate the killer’s memory. This side effect, generated by the technical properties of the platform, compromises the tranquility of the memorial and muddles the boundaries and the contents of such sanctuaries

    XO-5b: A Transiting Jupiter-sized Planet With A Four Day Period

    Full text link
    The star XO-5 (GSC 02959-00729, V=12.1, G8V) hosts a Jupiter-sized, Rp=1.15+/-0.12 Rjup, transiting extrasolar planet, XO-5b, with an orbital period of P=4.187732+/-0.00002 days. The planet mass (Mp=1.15+/-0.08 Mjup) and surface gravity (gp=22+/-5 m/s^2) are significantly larger than expected by empirical Mp-P and Mp-P-[Fe/H] relationships. However, the deviation from the Mp-P relationship for XO-5b is not large enough to suggest a distinct type of planet as is suggested for GJ 436b, HAT-P-2b, and XO-3b. By coincidence XO-5 overlies the extreme H I plume that emanates from the interacting galaxy pair NGC 2444/NGC 2445 (Arp 143).Comment: 10 pages, 9 Figures, Submitted to Ap

    XO-3b: A Massive Planet in an Eccentric Orbit Transiting an F5V Star

    Full text link
    We report the discovery of a massive (Mpsini = 13.02 +/- 0.64 Mjup; total mass 13.25 +/- 0.64 Mjup), large (1.95 +/- 0.16 Rjup) planet in a transiting, eccentric orbit (e = 0.260 +/- 0.017) around a 10th magnitude F5V star in the constellation Camelopardalis. We designate the planet XO-3b, and the star XO-3, also known as GSC 03727-01064. The orbital period of XO-3b is 3.1915426 +/- 0.00014 days. XO-3 lacks a trigonometric distance; we estimate its distance to be 260 +/- 23 pc. The radius of XO-3 is 2.13 +/- 0.21 Rsun, its mass is 1.41 +/- 0.08 Msun, its vsini = 18.54 +/- 0.17 km/s, and its metallicity is [Fe/H] = -0.177 +/- 0.027. This system is unusual for a number of reasons. XO-3b is one of the most massive planets discovered around any star for which the orbital period is less than 10 days. The mass is near the deuterium burning limit of 13 Mjup, which is a proposed boundary between planets and brown dwarfs. Although Burrows et al. (2001) propose that formation in a disk or formation in the interstellar medium in a manner similar to stars is a more logical way to differentiate planets and brown dwarfs, our current observations are not adequate to address this distinction. XO-3b is also unusual in that its eccentricity is large given its relatively short orbital period. Both the planetary radius and the inclination are functions of the spectroscopically determined stellar radius. Analysis of the transit light curve of XO-3b suggests that the spectroscopically derived parameters may be over estimated. Though relatively noisy, the light curves favor a smaller radius in order to better match the steepness of the ingress and egress. The light curve fits imply a planetary radius of 1.25 +/- 0.15 Rjup, which would correspond to a mass of 12.03 +/- 0.46 Mjup.Comment: 26 pages, 10 figures. Accepted by ApJ. Current version has several small corrections as a result of a bug in the fitting softwar

    Using Apollo Sites and Soils to Compositionally Ground Truth Diviner Lunar Radiometer Observations

    Get PDF
    Apollo landing sites and returned soils afford us a unique opportunity to "ground truth" Diviner Lunar Radiometer compositional observations, which are the first global, high resolution , thermal infrared measurements of an airless body. The Moon is the most accessible member of the most abundant class of solar system objects, which includes Mercury, asteroids, and icy satellites. And the Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. Here we compare Diviner observations of Apollo landing sites and compositional and spectral laboratory measurements of returned Apollo soils. Diviner, onboard NASA's Lunar Reconnaissance Orbiter, has three spectral channels near 8 micron that were designed to characterize the mid-infrared emissivity maximum known as the Christiansen feature (CF), a well-studied indicator of silicate mineralogy. It has been observed that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions, with enhanced CF contrast and shifted CF position relative to other spectral features. Therefore only thermal emission experiments conducted in SLE are directly comparable to Diviner data. With known compositions, Apollo landing sites and soils are important calibration points for the Diviner dataset, which includes all six Apollo sites at approximately 200 m spatial resolution. Differences in measured CFs caused by composition and space weathering are apparent in Diviner data. Analyses of Diviner observations and SLE measurements for a range of Apollo soils show good agreement, while comparisons to thermal reflectance measurements under ambient conditions do not agree well, which underscores the need for SLE measurements and validates our measurement technique. Diviner observations of Apollo landing sites are also correlated with geochemical measurements of Apollo soils from the Lunar Sample Compendium. In particular, the correlations between CF and FeO and AI203 are very strong, owing to the dependence on the feldspar-mafic ratio. Our analyses suggest that Diviner data may offer an independent measure of soil iron content from the existing optical and gamma-ray spectrometer datasets

    XO-2b: Transiting Hot Jupiter in a Metal-rich Common Proper Motion Binary

    Full text link
    We report on a V=11.2 early K dwarf, XO-2 (GSC 03413-00005), that hosts a Rp=0.98+0.03/-0.01 Rjup, Mp=0.57+/-0.06 Mjup transiting extrasolar planet, XO-2b, with an orbital period of 2.615857+/-0.000005 days. XO-2 has high metallicity, [Fe/H]=0.45+/-0.02, high proper motion, mu_tot=157 mas/yr, and has a common proper motion stellar companion with 31" separation. The two stars are nearly identical twins, with very similar spectra and apparent magnitudes. Due to the high metallicity, these early K dwarf stars have a mass and radius close to solar, Ms=0.98+/-0.02 Msolar and Rs=0.97+0.02/-0.01 Rsolar. The high proper motion of XO-2 results from an eccentric orbit (Galactic pericenter, Rper<4 kpc) well confined to the Galactic disk (Zmax~100 pc). In addition, the phase space position of XO-2 is near the Hercules dynamical stream, which points to an origin of XO-2 in the metal-rich, inner Thin Disk and subsequent dynamical scattering into the solar neighborhood. We describe an efficient Markov Chain Monte Carlo algorithm for calculating the Bayesian posterior probability of the system parameters from a transit light curve.Comment: 14 pages, 10 Figures, Accepted in ApJ. Negligible changes to XO-2 system properties. Removed Chi^2 light curve analysis section, and simplified MCMC light curve analysis discussio

    Calibration sphere for low-frequency parametric sonars

    Get PDF
    Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 121 (2007): 1482-1490, doi:10.1121/1.2434244.The problem of calibrating parametric sonar systems at low difference frequencies used in backscattering applications is addressed. A particular parametric sonar is considered: the Simrad TOPAS PS18 Parametric Sub-bottom Profiler. This generates difference-frequency signals in the band 0.5–6 kHz. A standard target is specified according to optimization conditions based on maximizing the target strength consistent with the target strength being independent of orientation and the target being physically manageable. The second condition is expressed as the target having an immersion weight less than 200 N. The result is a 280-mm-diam sphere of aluminum. Its target strength varies from −43.4 dB at 0.5 kHz to −20.2 dB at 6 kHz. Maximum excursions in target strength over the frequency band due to uncertainty in material properties of the sphere are of order ±0.1 dB. Maximum excursions in target strength due to variations in mass density and sound speed of the immersion medium are larger, but can be eliminated by attention to the hydrographic conditions. The results are also applicable to the standard-target calibration of conventional sonars operating at low-kilohertz frequencies
    • 

    corecore