27 research outputs found

    BASEL - The base language for an extensible language facility

    Get PDF
    Basic language for extensible language facilit

    Noisy One-Way Quantum Computations: The Role of Correlations

    Full text link
    A scheme to evaluate computation fidelities within the one-way model is developed and explored to understand the role of correlations in the quality of noisy quantum computations. The formalism is promptly applied to many computation instances, and unveils that a higher amount of entanglement in the noisy resource state does not necessarily imply a better computation.Comment: 10 pages, 6 figures, extension of a previous versio

    A relational quantum computer using only two-qubit total spin measurement and an initial supply of highly mixed single qubit states

    Full text link
    We prove that universal quantum computation is possible using only (i) the physically natural measurement on two qubits which distinguishes the singlet from the triplet subspace, and (ii) qubits prepared in almost any three different (potentially highly mixed) states. In some sense this measurement is a `more universal' dynamical element than a universal 2-qubit unitary gate, since the latter must be supplemented by measurement. Because of the rotational invariance of the measurement used, our scheme is robust to collective decoherence in a manner very different to previous proposals - in effect it is only ever sensitive to the relational properties of the qubits.Comment: TR apologises for yet again finding a coauthor with a ridiculous middle name [12

    Quantum entanglement analysis based on abstract interpretation

    Full text link
    Entanglement is a non local property of quantum states which has no classical counterpart and plays a decisive role in quantum information theory. Several protocols, like the teleportation, are based on quantum entangled states. Moreover, any quantum algorithm which does not create entanglement can be efficiently simulated on a classical computer. The exact role of the entanglement is nevertheless not well understood. Since an exact analysis of entanglement evolution induces an exponential slowdown, we consider approximative analysis based on the framework of abstract interpretation. In this paper, a concrete quantum semantics based on superoperators is associated with a simple quantum programming language. The representation of entanglement, i.e. the design of the abstract domain is a key issue. A representation of entanglement as a partition of the memory is chosen. An abstract semantics is introduced, and the soundness of the approximation is proven.Comment: 13 page

    Measurement-based quantum computation beyond the one-way model

    Get PDF
    We introduce novel schemes for quantum computing based on local measurements on entangled resource states. This work elaborates on the framework established in [Phys. Rev. Lett. 98, 220503 (2007), quant-ph/0609149]. Our method makes use of tools from many-body physics - matrix product states, finitely correlated states or projected entangled pairs states - to show how measurements on entangled states can be viewed as processing quantum information. This work hence constitutes an instance where a quantum information problem - how to realize quantum computation - was approached using tools from many-body theory and not vice versa. We give a more detailed description of the setting, and present a large number of new examples. We find novel computational schemes, which differ from the original one-way computer for example in the way the randomness of measurement outcomes is handled. Also, schemes are presented where the logical qubits are no longer strictly localized on the resource state. Notably, we find a great flexibility in the properties of the universal resource states: They may for example exhibit non-vanishing long-range correlation functions or be locally arbitrarily close to a pure state. We discuss variants of Kitaev's toric code states as universal resources, and contrast this with situations where they can be efficiently classically simulated. This framework opens up a way of thinking of tailoring resource states to specific physical systems, such as cold atoms in optical lattices or linear optical systems.Comment: 21 pages, 7 figure

    Generalized Flow and Determinism in Measurement-based Quantum Computation

    Get PDF
    We extend the notion of quantum information flow defined by Danos and Kashefi for the one-way model and present a necessary and sufficient condition for the deterministic computation in this model. The generalized flow also applied in the extended model with measurements in the X-Y, X-Z and Y-Z planes. We apply both measurement calculus and the stabiliser formalism to derive our main theorem which for the first time gives a full characterization of the deterministic computation in the one-way model. We present several examples to show how our result improves over the traditional notion of flow, such as geometries (entanglement graph with input and output) with no flow but having generalized flow and we discuss how they lead to an optimal implementation of the unitaries. More importantly one can also obtain a better quantum computation depth with the generalized flow rather than with flow. We believe our characterization result is particularly essential for the study of the algorithms and complexity in the one-way model.Comment: 16 pages, 10 figure

    Valence bond solid formalism for d-level one-way quantum computation

    Full text link
    The d-level or qudit one-way quantum computer (d1WQC) is described using the valence bond solid formalism and the generalised Pauli group. This formalism provides a transparent means of deriving measurement patterns for the implementation of quantum gates in the computational model. We introduce a new universal set of qudit gates and use it to give a constructive proof of the universality of d1WQC. We characterise the set of gates that can be performed in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical and Genera

    Generalized Flow and Determinism in Measurement-based Quantum Computation

    Get PDF
    We extend the notion of quantum information flow defined by Danos and Kashefi for the one-way model and present a necessary and sufficient condition for the deterministic computation in this model. The generalized flow also applied in the extended model with measurements in the X-Y, X-Z and Y-Z planes. We apply both measurement calculus and the stabiliser formalism to derive our main theorem which for the first time gives a full characterization of the deterministic computation in the one-way model. We present several examples to show how our result improves over the traditional notion of flow, such as geometries (entanglement graph with input and output) with no flow but having generalized flow and we discuss how they lead to an optimal implementation of the unitaries. More importantly one can also obtain a better quantum computation depth with the generalized flow rather than with flow. We believe our characterization result is particularly essential for the study of the algorithms and complexity in the one-way model.Comment: 16 pages, 10 figure

    A Successful Broad-band Survey for Giant Lya Nebulae I: Survey Design and Candidate Selection

    Full text link
    Giant Lya nebulae (or Lya "blobs") are likely sites of ongoing massive galaxy formation, but the rarity of these powerful sources has made it difficult to form a coherent picture of their properties, ionization mechanisms, and space density. Systematic narrow-band Lya nebula surveys are ongoing, but the small redshift range covered and the observational expense limit the comoving volume that can be probed by even the largest of these surveys and pose a significant problem when searching for such rare sources. We have developed a systematic search technique designed to find large Lya nebulae at 2<z<3 within deep broad-band imaging and have carried out a survey of the 9.4 square degree NOAO Deep Wide-Field Survey (NDWFS) Bootes field. With a total survey comoving volume of ~10^8 h^-3_70 Mpc^3, this is the largest volume survey for Lya nebulae ever undertaken. In this first paper in the series, we present the details of the survey design and a systematically-selected sample of 79 candidates, which includes one previously discovered Lya nebula.Comment: Accepted to ApJ after minor revision; 25 pages in emulateapj format; 18 figures, 3 table

    Formal Analysis of Quantum Systems using Process Calculus

    Full text link
    Quantum communication and cryptographic protocols are well on the way to becoming an important practical technology. Although a large amount of successful research has been done on proving their correctness, most of this work does not make use of familiar techniques from formal methods, such as formal logics for specification, formal modelling languages, separation of levels of abstraction, and compositional analysis. We argue that these techniques will be necessary for the analysis of large-scale systems that combine quantum and classical components, and summarize the results of initial investigation using behavioural equivalence in process calculus. This paper is a summary of Simon Gay's invited talk at ICE'11.Comment: In Proceedings ICE 2011, arXiv:1108.014
    corecore