
*BASEL: THE BASE LANGUAGE

FOR AN EXTENSIBLE LANGUAGE FACILITY

M a s s a c h u s e t t s

https://ntrs.nasa.gov/search.jsp?R=19700006176 2020-03-12T01:57:03+00:00Z

A r e a C a d a 6,7 Massachusetts
COMPUTER ASSOCIATES, Inc. /Lakeside Office Park - Wakef ie ld , Massachusetts 01880 245-9540

*BASEL: THE BASE LANGUAGE

FOR AN EXTENSIBLE LANGUAGE FACILITY

Alice E , Fischer
Philippe Jorrand

June 2 8 , 1 9 6 8
CA-6806-2 8 11

BRANCH OFFICES: 450 SEVENTH AVENUE, NEW YORK. N.V. 10001/1117 NORTH 19th STREET. ARLINGTON, VIRGINIA 22209

Table of Contents

page

1
3

5

7
7

11
16

19

2 1

2 6

28

29

30
30
31

INTRODUCTION and OVERVIEW
0 BJECTS
EXPRESSIONS

Data opera tors
Mod e -descriptor opera tors
Constructors

DECLARATIONS
Mode identity and mode declarations
Procedures
Declaration of variables

PROGRAM STRUCTURE
Compound Expressions
Tuples
The Scope of a N a m e

CONTROL STATEMENTS

INTRODUC TI0 N and OVERVIEW

BASEL is a primitive Algol-like programming language which is

both self-extensible and is adaptable through lexical , syntact ic and
other higher-level extensions.

A full d i scuss ion of the implications of this design can be found
in the companion paper, "On the Basis for ELF - a n Extensible Language
Facil i ty".
following design goals:

Briefly, though, this means that BASEL should sa t i s fy the

As a language, it should be a n adequate means of communication
not only between a human and a machine, but also between
humans. That i s , the language should be reasonably e a s y
to write, compile, and read. It should also be e a s y to learn.

A s a primitive language, i t should be simple and should contain
a minimum of constructs.

A s a n extensible language, i t should be free from asymmetries and
special cases. Because it is self-extensible , meanings for
constructs need not be pre-defined if they can be defined con-
veniently i n terms of other construct s , and in fac t , meanings
should not be pre-defined i f thera:is any dispute about what a
construct should mean.

As a n ALGOL-like language, BASEL should not arbitrarily introduce
new key words and constructs for old meanings , but abide , where
possible , by tradition.

As a programming language, it should mirror the standard hardware
operations of current computing equipment.

A BASEL program is a compound expression that begins with 'beqin'
and ends with le'. (Parentheses a re synonyms for 'beqin . . . e'.)
This compound expression may contain any number of simple expressions
(or statements) , which in turn may have compound expressions nested within
them.

- 1-

A BASEL program is executed by sequentially evaluating the simple
expressions which are part of the top-level compound expression. This, of course ,
causes any nested expressions to be evaluated, and the values of these nested
expressions may be used in the containing expressions.

. I This compound expression computes the sum of the
f i rs t ten elements of the row A.

BASEL has four kinds of primitive program elements:

1 ,2

a , Names identify the objects that a program manipulates. There
are two kinds of objects: mode-descriptors and da ta .

I le t temp be a loc int;

- f o r i from 1 & 1 10 7

1 5

0 ~_q temp: i 6

b. Operators manipulate the objec ts . These include the assignment
operator, operators such as plus and less than, and procedure
calls.

do &temp + A . (a i) -+ temp;

c . Control statements a re used to specify the order i n which the
expressions are executed

8,9,10 I

d . Declarations are used to define objects and operators, and give
them names.

Notes on this example:

1. We assume that this compound expression is nested within a block in
which A is declared to be a row of integer va lues , whose length is a t
l ea s t 10. (A row is similar to a one-dimensional FORTRAN array.)

2 . Comments are delimited by ' a I . . . I . '
3 . BASEL uses reserved words: by des ign , all of these are strings of

underlined le t ters .

-2 -

4.

5 .

6.

7 .

8.

9.

10.

11.

12.

This example cons is t s of a compound expression, delimited by
'beqin . a end'.
the block which begins with 'let temp' and ends with '& temp'.

Declarations begin with the symbol 'H.
' temp' to be the name of a n integer variable, and causes space to
be allocated for ' temp'.

' ' is the assignment operator. I t c a u s e s the value on the left
to be stored in the variable on the right.

'for - i from 1 b~ 1 to 1 0
It is given the following interpretation:
1. Set the variable i to 1.

2 .

The entire body of this compound expression is

This declaration defines

scope is a n iteration control statement.

If the current contents of i is greater than 1 0 then go to the
statement following the scope. Otherwise follow the instructions in
the scope .
When the scope is finished
by 1. Go back to s t e p 2 .

3 . increment the current contents of i

' V a l ' 7 is a n operator whose operand must be a variable. (A variable
may be thought of as a box which may contain a va lue .) 'a' causes
the contents of the variable to be fetched.

' . ' is the subscript operator, for example 'A. 1' denotes the f i rs t
element of the row 'A'.

Since A is a row of values (not variab1es)then A. (A i) is one of thcs e

values , and c a n be added to the value which was stored i n the variable
' t emp ' ,

The value of a block is the value of the l a s t computed simple expression
in i t , in this case the final value of the variable ' temp'.

If this block were executed when A had the value
5 , 5 , 4 , 3 , 2 , 1 ,] the value of the block would be 30.

10 of in t [1 , 2 , 3 4

0 B JE CTS

An object is a n enti ty that c a n b e operated upon or manipulated.
BASEL has two kinds of objects: da ta objects and mode-descriptor objects(modes) ,

-3-

Some objec ts of each kind are pre-defined; new objects a re defined by de-
c larat ions. A mode-descriptor descr ibes the s i z e , internal structure and oper-
a t ional character is t ics of any da ta object to which i t is attr ibuted. The pre-
defined modes are:

Data Modes: integer value written &t
rea 1

boolean value boo1
character value char

free
mode

real value -

unspecified -
The mode of a mode-descriptor:

Certain values having these modes have pre-defined names. These
are:

the non-negative integers written 0 , 1, 2 , . . .
the non-negative rea ls O., 3 . 9 6 , . 5 , 3 . 7 ~ - 2

the boolean values --
the character va lues IAI, . . . I I Z ' , I l f , l2',

t rue, false

1 1
. . . I , , I + ' , ...

Because these names are conventional representations of their meanings,
they a re some times cal led ' l i t e ra l s ' .
can give other names to these va lues .
that c a n be computed.

Through declarations , the programmer
In fac t , i t is possible to name any value

Occasional ly procedures a re written which can accept parameters of any
mode, including modes which a future user might invent. A general output
routine is a n example of such a procedure. The formal parameter to such a
routine would be specified with a 'free' or partially 'free' mode. (the 'free'
mode may only be used to descr ibe formal parameters.) Detai ls of the way
in which 'free' objects a r e handled a re given in the sect ion on procedures.

A programming language must provide for storing data values, We will
u s e the term ''variable'' to mean a place in which a data-value may be s tored.
A variable can be viewed as a box of a particular s i z e and shape determined by
the mode of the value which i t may contain. Each box has a unique address

-4-

through which i t can be accessed. Declaring a variable causes a box of the
appropriate shape to be created, and the box's address to be associated with

the declared name.

Wo consider addresses themselves to be values, and therefore they
are legitimate data objects capable of being the contents of other boxes. We
u s e the term "pointer" for a variable which can store the address of a variable.

EXPRESSIONS

Jus t as BASEL has two kinds of objects, data objects and mode-
descriptor objects, so BASEL has two kinds of expressions.

1. The data expression involves data operators and data procedure
calls. It either has a data object a s its value or has no value
at all. Its mode is a mode expression.

2 . The mode expression involves mode operators , mode procedure
calls and data expressions. It has a mode-descriptor as its
value. Its mode is mode.

An expression is one of the following:

1. The name of a data object is a data expression.
a literal is a name.) The name of a mode-descriptor is a mode
expre s s ion.

(Recall that

2 . An operator applied to its declared number of operands each of
which is an expressi on of the appropriate mode for that operator
is an expression.

-5-

3.

4.

5 .

A procedure call , which is a procedure-valued expression followed
by a tuple-valued expression representing the ac tua l parameter
l i s t , is a n expressionJA tuple is a list of values) . Each actual
parameter must have a value whose m o d e agrees with the mode
of the corresponding formal parameter i n the procedure declaration.

A constructor, which is a mode-descriptor-valued expression
followed by a tuple-valued expression, is a data expression.
This c a u s e s the tuple to be turned into a n object of the given
mode. The mode of each value in the tuple must be the same
as the mode of the corresponding component a s described i n the
mode -des criptor .
An ' i f ' s tatement, a 'for' statement, or a 'when' s ta tement
is a data-expres s ion.

The sect ions on control statements , operators , e t c . define the ways
The result of evaluating an in which each type of expression is evaluated.

expression is cal led the value of the expression.

Data Opera tors

The pre-defined data-operators are l isted i n Appendix I. These
are all generic operators, that i s , the particular act ion performed by a n
operator depends on the modes of i t s operands. Operators a re only pre-
defined for certain combinations of operand-modes . The programmer can
extend the definitions to cover other combinations.

A few of BASEL's pre-defined operators a re both unusual and i m -
These have already been touched upon in examples, and a l i s t portant.

of them is given below.

symbol name of operation
--+ assignment
- va 1 fetch a value

se lec t a component
identifty predicate (is the same object as) - is

Mode Operators

There a re six mode-descriptor operators. Operands for these may be
any pre-defined or programmer-defined data modes or mode expressions. The
result of a mode-descriptor operator is a mode-descriptor.

row
A row is a homogeneous ordered s e t of va lues . The s i z e of this
- 1.

s e t can be either fixed or variable. The members of the s e t a re numbered,
and can be accessed by number. If A is a row of va lues , then A. 3 is the
third value in that s e t .

The mode-descriptor operator 'TOW' builds the description of such
a s e t out of the description of the mode of the values in the s e t and a n
integer-valued expression specifying the size of the s e t . The syntax for
describing a fixed length row is:

- row { integer-valued expression) of (mode expression)

The syntax for describing a variable length row is:

- row of (mode expression)

The selector ' length of' is used to access the current length
of a row.

Examples : I
row 2 of int -

This descr ibes a s e t of two integer va lues .

row of char -
!
i 1

This descr ibes a variable length character string. I

2. struct

A structure is a non-homogeneous s e t of va lues . The members of
this s e t a re named and access ib l e by name. If ' s tack ' is a structure which
has a component named 'top' then ' s tack. top ' refers to that component.

The mode-descriptor operator Istruct' builds the description of such a
s e t out of the descriptions of the modes of the components and the names to
be given to these . The syntax for this operator is:

s t ruct ((l i s t of f i e lds))

where each field specifies the mode and name of a component, and has the
syntax:

(mode of component) (name of component)

The fields a re separated by CDmmas .
-- -

I Example :

st ruct (&t numerator, &t denominator)

I This mode expression could be used to descr ibe a rational number. I -- 4

-8-

3 . tuple

1

The concept ' tuple ' underlies the concepts 'row' I ' s t ructure ' , and
'actual parameter l i s t ' . A tuple is a l i s t of values out of which a row, a
structure, or a parameter l i s t c a n be bui l t ,

This is the description of a list of two values whose modes are i
I

not homogeneous. An object of th i s mode could be turned into a structure 1
or a parameter list, but could not be made into a row. i

The mode-descriptor operator ' tuple ' builds the description of such
a l i s t out of the descriptions of the modes of the values in the list.

syntax for this operator is:
The

tuple ((list of the modes of the components))
-_ ._ -. - . . .-

Examples

tuple(int, Inr) I

This is the description of a l i s t of two integer values . An object
of this mode could be turned into a row, a structure I or a n actual
parameter list .

loc
I_

4.

A variable is a box (a location) i n which a value may be stored.

The mode-descriptor operator 'K builds the description of a
variable given the description of the value which i t may store. Note that
this implies that a variable may store values of only one mode: a real
variable may store a real value but not a n integer value.

The syntax for this operator is:

- loc {mode of the value which this variable may contain')
t
i Example : i I

loc in t --
-9-

I This descr ibes a variable which may s tore a n integer va lue .

5 . proc

A procedure is a parameterized description of a value. (This
value is usual ly specified by giving a n algorithm by which to compute i t .)
Since procedure calls a r e used i n express ions , i t is reasonable that we
should be interested in the domain and range of each procedure. This in-
formation is embodied in the procedure's mode.

The mode-descriptor operator 'proc' builds the description of the
mode of a procedure out of the modes of i t s parameters and the mode of i t s
resul t . The syntax for this operator is:

proc ((l i s t of modes of the parameters)) (mode of result}

If the procedure has no parameters, then i t s mode is written:

PTPI; () (mode of result)

If the procedure returns no resu l t , i t s mode is written:

proc ((modes of the parameters)) none

Note that 'none' is not a mode, but se rves as a place holder, to make
the syntax unambiguous.

__._

Examples :

proc (rea l) real

This descr ibes the mode of a n ordinary trigonometric function.

proc (b t) none

This could be used to descr ibe a procedure to open the fi le designated
by the integer code .

proc () s t ruc t (k t , k t)

This could be used to descr ibe a procedure which returns the current
time of day expressed as two integers representing hours and hun-
dredths of hours. - 10-

proc () none

This could descr ibe the mode of a DUMP procedure.
- __ __ __ - - 1 __ .- . - - - -

6 . union

Occasionally i t is useful to permit a variable to store values of

more than one mode, or to permit a n expression to produce a value whose
mode depends on the da t a . The mode-descriptor operator 'union' is used
to build the description of a mode which is not completely f ixed, but can
be one of a fixed finite s e t of modes. The mode of a variable declared to
be a 'union' can vary dynamically among this fixed s e t of modes, depending
on the mode of the value most recently stored in i t . The mode of a n ex-
pression can vary i f that expression contains a conditional whose ' then'
and ' e l s e ' c lauses a re expressions of different modes.

The syntax for this mode-descriptor operator is:

union ((s e t of mode expressions))

union (r ea l , 3) I --

This expression descr ibes a numeric value.

-- loc union (- real , u)
This expression,
numeric value.

then, descr ibes a variable which can store a n y l

Constructors

BASEL is a language i n which a n unbounded number of modes can be
defined, and therefore must provide a general way for writing a value of

any mode.
to write the components of a n object , correctly grouped, and deduce the mode
of the object from the mode of i t s components. A date(year and day) and a ra-
tional number(numerator and denominat0r)may both have the structure of a pair of

The s implest solution does not work; i t is not generally possible

integers , but must be treated differently. One obvious solution is to u s e mode
names(or mode expressions)as ' lconstructors", That is , a value of mode X would

-11-

be written :

X [(list of va lues of components, correctly grouped) 1

This notation is s imple, e a s y to remember, and h a s the added advantage
that i t reminds u s that a n X cannot be constructed out of inappropriate
components any more than a procedure can be cal led
parameters.

with inappropriate

Example

If the mode 'complex' is defined by the mode expression

-- st ruct (real r , real i)

then the following denote complex values:

complex [1.0, 0.01

complex [pi + 2. , s i n [pi / 2.31

Examples of Expressions :

Data Expressions

4

M

The value of this expression is 4..

Assume that M has been declared to be a data

object . The value of this expression is the meaning
that was given to M in i t s declaration. (If M is
a variable i t s meaning is the address of the space
al located for i t , not the value stored in that a d d r e s s .) -

Val J -

2 + & J

If J h a s been declared to be a var iable , then the
value of this expression is the value that
is stored i n J .

The value of this expression is the resul t of adding
2 to the value which is the resul t of the

of the expression 'a J'

- 12-

5 - J

5 - J - K

log F pi1

Conventional precedence relations a re
observed; wiJ t akes precedence over
both + and *, and * t akes precedence
over +. So the value of this expression is

2 added to the resul t of multiplying the
value stored i n J by the absolute value
of the number stored in K .

This c a u s e s 5 to be stored i n the variable

J . The value of a n assignment expression
is the value of the expression on the left
s ide of the I-'; the value of this expression
is 5 .

' - ' is a left-associative operator, so this
would be parsed as (5 - J) - K . That is ,
this causes 5 to be stored i n the variable J ,

and the resu l t of this expression, which is

5 , is then stored in the variable K . The

value of the entire expression is 5 .

This is a call on the data-procedure ' log ' .
' p i ' is a rea l va lue , and the resul t of this
expression a real value.

sin[pi * .SI + cos [pi] The value of this expression is the sum of the
values returned by the two procedures
' s in ' and ' cos ' .

Mode Expressions :

tuple (real , real, real) This descr ibes a triple of rea l values that may
be used as the actual parameter l i s t i n a
procedure call or constructor function call.

row 3 of real - -- This descr ibes a numbered triple of real values
that may be accessed individually by number
(subscript) . They may be manipulated by
any operator or procedure that works on a
row of real va lues .

-13-

-- struct(rea1 r , real i , real c) This descr ibes a triple of real values that
may be accessed by name. This pair
may be manipulated by any operator or
procedure that works on a structure
of three real numbers named ' r ' , ' i '
and I C ' .

row V a l I + 7 of loc real --

row 5 of row 6 of int - -- --

row 3 of proc (rea1)real -

-- s truct (real r)

This descr ibes a s e t of rea l var iables , the
s i z e of this s e t is the value. of the
expression 'a I + 7 ' . If this mode-
expression is used in a declarat ion,
the extent of the row will be evaluated
a t time of entry of the block in which
the mode-expression is used as a
declarator.
as a constructor function (to con-
s t ruct a row of real var iables) , the
extent will be evaluated before the
l i s t of expressions whose values a re
to be made members of the row.

If this expression is used

This descr ibes a 5 x 6 array of integer
values .

This descr ibes a s e t of 3 procedures, each of
which takes a rea l parameter and re-
turns a real resul t .

A structure with one component may be used
when the programmer wishes to modify
the way in which bas i c operators be-
have. For ins tance , arithmetic on
radians is sometimes done modulo 2 . "

pi . The mode expression here could
be used to descr ibe the s i z e of a n
object expressed i n radians. In de-
fining addition on these objects the
programmer would specify that the
' r ' parts of two radians be added (using

.". $3 -

- real arithmetic) , and the result be
reduced modulo 2 . *pi (using real
division). The result of this would
then be labelled a s a radian quantity.

--- struct(1oc int level, 50 of loc boo1 elem)
This mode-expression might be used to

describe a push-down-s tack which can
hold boolean values. The integer
variable 'level' would store the index
of the current top of the stack.

loc real --

lac proc (real) real -

lac loc real ---

lac loc loc real
I_---

union (atom, list)

-- union (real, k t)

This describes a real variable.

This describes a procedure variable, i n
which the 'sin' function might be
stored.

This describes a variable which can hold
the address of a real variable , that
is, i t describes a real pointer.

This describes a pointer to a real pointer.

This might be used to describe the mode of
a list element.

This might be used to describe a numeric
value.

union (k t , loc in t , loc loc int)
This might be used to describe an object

from which an integer value can be
obtained.

- row any of char This might be used to describe a
character string of any length.

- 15-

loc row any of char --

J

- free

-..
Examples

alpha
b2
POST
nu mber-one-s on

_I- -

lac free --

row any of free -

This would then descr ibe a space in which
any character s t r ing could be stored .

This can be used to descr ibe a formal
parameter to a data procedure. This
procedure will then accep t a n ac tua l
parameter of any mode.

This c a n be used to descr ibe a formal

parameter to a da ta procedure, Any
variable (that is I any object whose
mode is & something) will be accepted
as a n ac tua l parameter.

A formal parameter of this mode can be
matched to any ac tua l parameter which
is a row. (A row of any length of
elements of any mode whatsoever.)

DECLARATIONS

Declarations a r e used to define and name objects and operators.

Every declared object is given a name. This name can have one of

the following forms:

a . A string G f upper case let ters I lower case l e t t e r s , underscores and
numerals, start ing with a le t ter .

- 16-

b. An underscored s t r ing of characters .

There a r e no restr ic t ions on which type of name may be given to a n object .
All reserved words and pre-defined names are of form (b) In order to make
i t c lear which objects a r e pre-defined, names of form (b) are not used for
declared objects i n this paper.

Each object or operator is completely characterized by i t s name , mode,
and meaning.

-_-_
Examples

The mode descriptor

is completely characterized by this name, i t s mode which is

and i t s meaning, which is pre-defined and descr ibes the amount of
space occupied by a real and internal structure of that space .

The da ta object

- - . .

2

is characterized by its name: by i t s mode, which is "integer value 'I,
s yrn bo lized by

and by i t s meaning, which is a pre-defined representation of the
second positive integer.

-17-

Declarations are used to combine these primitive objec ts into new
objec ts . The syntax for a value-declaration is:

- let (name) (expression):
-

Examples

- le tpi 3.14159;

is a declaration which c rea tes the data object whose name is

Pi

whose mode is the mode of the expression '3.14159' , which is

real -

and whose meaning is the value of the expression '3.14159' .

_. let complex be s t ruct (~ l r , real i)

is a declaration which creates a mode descriptor whose name is

complex

whose mode is the mode of the expression to the right of 'be',
which is

mode -
and whose meaning is the value of the mode expression

s t ruct (real r, real i).

which descr ibes the amount of space occupied by a complex object ,
and the internal structure of that space . Specifically, a complex
object requires as much s p a c e as two reals, and those two real com-
ponents a r e to be a c c e s s e d by the names 'r ' and 'it.

-18-

Mode identity and mode declarations

As mentioned before, i t is des i rab le to be ab le to define objects
with the same structure but which represent different kinds of things, and
must be treated differently. It is also desirable to be ab le to mme a va lue ,
then u s e the name and a n expression which computes that value inter-
changably. The quest ion then a r i s e s , what should a mode name mean?
Should i t be simply a shorthand for a long descr ipt ion, and be interchangable
with the mode expression used in declaring the name? Or should i t define
a class of ob jec t s , thus enabling the programmer to define different modes,
even if those modes have the same structure . The following examples i l lustrate
why both conventions a r e useful.

Example 1:

A programmer is deal ing with vectors i n 2-space. He is
using both polar and Cartesian coordinate representations of
these , and wishes to define vector addition. Addition is , of
course , done differently for these two representations.

The programmer wishes to declare the two modes as follows:

name: polar car t
mode: mode mcd e

row 2 of real
-

meaning:=w 2 of rea l - -.-

Then the definit ions of polar and Cartesian addition, in
terms of pre-defined rea l addition would be:

- l e t + mean proc (polar A, polar B)

(polar[sqr t [(A. 1 * cos A. 2 +
B . 1 *cos B . 2) f 2 + (A . l * s i n A . 2 +
~ . ~ * s i n ~ . ~) t ~ l , a r c t a n [. . .]]) ;

- l e t + mean proc (ca r t A, car t B)

(cart CA.1 + B e l , A , 2 + B.21);

-19-

In order to make these two definit ions useful , the m o d e name
of the operands must be checked.

_ _

Example 2:

The programmer wishes to def ine mnemonic names for his
new modes, but does not wish to make objects declared with
these names incompatible with objects and operators declared
by writing out the full mode expression. In th i s c a s e , the
programmer wants to u s e a mode name as a shorthand. This is
analogous to declaring a name for a cons tan t l ike 'pi ' e

Since both interpretations of a mode name a r e useful , BASEL h a s
two mode declaration forms. These are:

1. To dec lare a mode such that the mode name is to identify a
separate class of objects:

- l e t (name) name (mode expression);

2 . To dec lare a mode whose name is to be a shorthand for its
meaming:

- l e t (name) & {mode expression)

-7
Exa m pl e s : I

l e t car t name 2 of real;
le t polar name row 2 of real:
-
_.

- let intvar be loc int;
- l e t intpoint be loc loc int;

Thus i t is possible to define different addition operations
over 'cart 'objects and 'polar' ob jec ts , but anything defined
for 'loc in t ' automatically appl ies to 'intvar' , and vice versa .

-20-

Procedures

A procedure is a literal , parametrically dependent value , and con-
sists of a formal parameter list followed by a procedure body.

A mode procedure (that is , a procedure whose body consists of a
mode expression) may take both data objects and mode descriptors as par-
ameters. The result of such a procedure is a fixed mode-descriptor. Mode
procedures may be declared with either the 'name' or the 'E form of the
mode declaration. The result of executing a named mode procedure is a
mode-descriptor which is named by an encoding of the procedure's name and
the actual parameters of the call.

Examples

_. let vector be proc (&t N) (TOW N of real):

This declaration defines 'vector' to be a shorthand for the mode
procedure proc(int - N) (raw N of real) . Either the procedure could
be applied to an actual procedure list consisting of one integer
value, as follows:

vector [51
proc (i& N) (E N of real) [51

The result will be the fixed mode-descriptor

row 5 of real - --
let stack name proc (k t L, mode M) -

(- struct (loc int level, L of loc M elem));

This declaration defines 'stack' to be a named mode procedure.
Declaring an object, say S , to be a

stack 100, char] [
is not the same as declaring it to be a

proc (int L , mode M)

-2 1-

but c a u s e s a n additional attr ibute to be as soc ia t ed with S;
that is S is tagged with the information that i t is a%tack'of 100
characters . The only operators that will be appl icable to S a r e
those that have been declared for'stacks'.

A da ta procedure (that is , a procedure whose body cons i s t s of a
(Permitting data expression) may take only da ta objec ts as parameters.

mode objec ts as parameters would allow a greater extent of mode-variability
than we are now prepared to implement efficiently.
contains a fuller explanation of this restriction.)

The companion paper

The mode of a formal parameter of a da ta procedure may be specified
to be partially or completely 'free'. (A mad e expression in which 'free' occurs
is said to descr ibe a partially-free mode.) Such a procedure may be executed
with a n y parameter whose mode "matches 'I the partially free mode. By "match"
we mean tha t the two modes must be ident ical except that where'free' occurs i n
the formal parameter's mod e , any well-formed mode expression may occur in
the ac tua l parameter's mode. Within such a procedure, one may access and
t e s t the mode of the ac tua l parameter using the se l ec to r 'mode o f ' , the predicate
'is' - and the statement 'when',

Exa mple :

A formal parameter P which h a s mode

row 3 of loc free -
can be bound to a n ac tua l parameter of any of a n infinite number of

modes, including

row 3 of loc real
- row 3 of loc s t ruct (k t A, a t B)
- row 3 of loc proc (@) real

-

The body of this procedure might contain the tes t :

- when mode &I" j . ~ row 3 of loc rea l
- then printreal vya-1 (P. 1)
else . . . -

1 -
-22-

A procedure, l ike any other ob jec t , is completely characterized
by i t s name, mode and meaning e

-

Exa m p les

The declaration

- l e t mean be proc (rea l A, B) ((A+B) /2 .):

defines a da ta procedure named

mean

Its mode is

proc (r ea l , real) r ea l

and i t s meaning is a piece of code which computes the arithmetic
mean function (average) when executed with two real values as
parameters.

The declaration

- l e t matrix be proc (&t M , G t N) (TOW M of row N of real) :

defines a mode-descriptor procedure named

matrix .

Its mode is

proc (h t , &t) mode

and i t s meaning is a representation of a parameterized mode-descriptor
which produces the descr iptor of a n M x N matrix when applied to a
pair of integer parameters.

A generic procedure is a family of procedures all having the same name.
A particular member of this family is chosen as the meaning of the procedure
name in a given context by matching the modes of the ac tua l parameters&given i n
that context, to the modes of the formal parameters i n one of the generic procedure's
members.

-23-

Example

A programmer might define the generic procedure

to have two members, one taking a rea l parameter, which might be

written as:

proc (real x) ((program to compute the log of a rea l value))

the other taking a complex parameter, which might be written as:

e c (complex x) ((program to compute the log of a complex value))

Then in the context

log [3 . 7 1

the procedure

proc (real x) (.# 1

is taken as the meaning of "log", while i n the context

log [complex [1 . 1 , 3.71 I

the procedure

proc (complex x) (~. . 1

is taken as the meaning of ''log''.

The abi l i ty t o define new mode-descriptors makes i t possible for the
programmer to combine the pre-defined mode-descriptors into patterns that
better reflect his concept of h i s da t a . Having done this he would then declare
operators to work over these new forms , such as ' + I over a pair of complex
numbers or 'union' over two s e t s , etc. An operator is a generic procedure for
which a spec ia l syntact ic form h a s been declared.

-24-

Example

' + I is a n operator whose m a n i n g cons i s t s of the two procedures
defining addition over a pair of real va lues , and over a pair of integer
values e These two procedures c a n be represented by:

proc (rea l A, real B) ((basic machine-dependent definition of
floating point addition))

proc (int A, a t B) ((bas i c machine-dependent definition of
integer addition))

The following declaration of the syntax for ' + I is built in to the pro-
cessor:

l e t + be infixL prec <*; - --
This indicates that a call on one of the members of ' + I is not to be
written in the form of a procedure call, but rather, the operator 's
name is t o be written between i t s two operands.
The 'L' of 'infixL' indicates that a se r i e s of additions a re to be done
from left to right, and the expression "prec < * ' I gives the operator '+'
a lower precedence than the previously declared operator I * ' .

New operators may be declared.

Example

- l e t s i n be prefix prec = Val:

declares s in to be a new operator which will be called by writing i t s
name in front of i t s operand. Its precedence is the same as the pre-
cedence of 's. Procedures are attributed to "s in" by la ter statemert s .

New procedure bodies may be declared to belong to an already exis t ing
opera tor.

Example :

- l e t + mean proc (real A, complex B) (complex [A+B.r, B. i]):

-2 5-

This declaration defines '+' between a real and a compiex. The

result is a complex value.
_ _ .. -

Declaration of Variables

A variable, also, is completely characterized by its name, its mode and
its meaning. The mode of a variable is the &of the mode of the value which
may be stored i n i t . The meaning of a variable is the address of the box
allocated for i t .

I

Examples

If X is a real variable, then the mode of X is

I
I

and the meaning of X is the address of the particular box allocated for
X when X was declared. 'Xi used i n an expression stands for the 1
address of this box. I

I loc real --

l
--I

If TRIGFUN is a proc (rea1)real variable, then the mode of TRIGFUN is

- loc proc (real) real

and the meaning of TRIGFUN is the addres s of the box allocated for i t .
TRIGFUN may be used a s follows:

s i n - TRIGFUN This assigns a value to the variable.

L Val TRIGFUN) [p i] + . 5 'Val' applied to this variable produces
a function which takes one real
parameter. This function may then
be applied to the actual parameter
list ' [pi] I , and the result will be
a real value, which may be added
to the real value I . 5 ' .

When a programmer declares a variable he does not usually care what
address is made the meaning of the variable. Rather, he cares that this is
the address of a space of the proper size and shape, and that this space has

-26-

not previously been allocated for another variable. The syntax for a variable
declaration reflects this:

- let (name) be a (mode-expression):

The word 'E' is an acceptable variant of '&.

Such a declaration causes a space of the right size to be allocated, and
makes the address of that space the meaning of the declared name.

Examples

- let intvar be loc int;

- let P1 be a loc loc int;

- let P2 be an intpoint;

_. let x &A (v ~ l J);

'intvar' is a new mode-descriptor
which describes an integer variable.

'INDEX' is an integer variable,

'J' is also an integer variable

'intpoint' is a new mode, which
describes a pointer to an integer
variable.

'P1' is a pointer to an integer variable.

'P2' is also an integer pointer.

'x' is another name (a synonym) for
the j ' th element of the row A, which
w e assume bas been previously de-
clared.

- let INDEX be a loc int;

- let J 3- be an intvar;

_. let intpoint be loc loc int;

les may be used a s follows:

The value of the expression '6 ' is stored i n J.

The value of the expression 'J' is stored in
P2, that is, P2 is set to point at J .

y&l. INDEX 4 J

- Val P2 -Pl

6 + W J - J The value of J is incremented by 6 .

J is set to the value that INDEX holds.

P1 is set to point at whatP2 points a t ,

-27-

These varia

6 - J

J -P2

PROGRAM STRUCTURE

The block is the basic unit of program structure . Blocks a re made

out of declarat ions and express ions , and in turn a r e used to make compound
expressions and tuples.

Formally, a block is a se r i e s of zero or more declarat ions, each
terminated by a semicolon, followed by a se r i e s of zero or more express ions ,
terminated by semicolons or ' a t ' s . A block (and the l a s t expression in i t)
is terminated by a c o m m a , a compound expression delimiter or a tuple delimiter.
The scope of definition of a label or identifier is the innermost block that con-
ta ins the declaration of that l abe l or identifier.

During execut ion, a block is always entered a t i t s beginning. The
expressions within a block a re executed sequent ia l ly , except of course , go to
commands a re obeyed. Control leaves a block af ter the physically l a s t ex-
pression in i t h a s been evaluated, or when a n ' a t ' is encountered. An ' a t '
is l ike a n instruction to go to a n imaginary label at the end of the block.

The va lue , i f a n y , of the last-evaluated expression in a block is taken
as the value of the block. If control was terminated by a n ' s t ' , the last -eval-
uated expression is the one immediately preceeding the ' e a ' , otherwise it is
the physically l a s t expression i n the block.

Several ' ex i t ' s may be written in the same block, with the restriction
that i f any of the expressions preceeding a n ' a t ' h a s a va lue , then all of
them must.

The mode of a block is the union of the modes of all the express.ions
preceeding ' a t ' s , and the last expression in the block. If the modes of all
these expressions a r e the same, then that is the mode of the block.

Blocks may be used in two contexts ,

1.

2.

A s elements of a compound expression.
A s elements of a tuple.

-28-

Compound express.i ons

- else

A compound expression is a l i s t of one or more blocks, separated by
I , Is. This l i s t is bracketed by ei ther 'begin . , . - end ' or by I (. . .) I . At
most one of the blocks in a compound expression may have a va lue , and this
value is taken as the value of the compound expression. The mode of this
value is taken as the mode of the compound expression.

(a s . e l e m . ([ZiJTGZq) ,
- val S.leve1 - 1 --4 S.leve1;)

A compound expression may be used in place of any simple expression,
and can serve one of two functions:

1.
2 .

To group a series of ac t ions together.
To indicate that a value is to be computed, then "held in hand"
while some act ions a re performed, then control is to return to
a higher level where that value may be us ed.

Example

The following piece of code is written three t imesjfirst with a box
around each of the b locks , then with a box around each compound
expression, third with a box around the tuple. The code is a definition
of 'popping' a push-down s t ack named S.

beqin

beqin

- i f S .level = 0

-29-

besin

i f S.leve1 = 0
- then e r r o r l L 1
- else (S .elern. (val level) ,

-

- val S.leve1 - I-+ S.leve1;)

A tuple is a series of blocks bracketed by I t [. . .1 ' I . , The value
of a tuple is the series of values of its valued-blocks. The mode of a tuple
is:

tuple ({list of modes of the valued-blocks i n the tuple)) . Tuples
are used as actual parameter lists in procedure calls and constructor function
calls.
tuples.

Building upon this basic use, the programmer. may define operations over

The Scope of a Name

The scope of any declared name or label is the block i n which it was
declared. Declared names are also "known" in blocks which are properly con-
tained within the block i n which they were declared.

-3 0-

CONTROL STATEMENTS

1 . - i f (boolean-valued expression) then (expression) e k e (expression)
a .

b.

C .

The expression a f te r 'if' must have boolean value. This ex-
pression is evaluated and the resu l t is tes ted .
following either the ' then' or the 'else' is then evaluated,
according to whether the'if'clause resulted in ' m e ' or ' f a l s e ' .
The value (i f any) of this expression is the value of the 'if' -
statement .

The expression

If the expressions i n the two c lauses have the same mode, then
this is the mode of the entire 'if' statement.
different modes, the mode of the 'if' statement is union ((mode
of the ' then' c l a u s e) , (mode of the ' e l s e ' c l a u s e)) .

If they have

If either c l ause h a s a value, then both must. This restriction allows
the compiler to insure that the expression which contains the
conditional is well formed.

2 . when (mode-test) then (expression) else (expression)

a . This statement is a combination of a n 'if' statement and a declaration.
It is used as a conditional to t e s t the current s t a tus of the mode
of a n object whose mode can vary dynamically. The expression
in the 'when' c lause is a conjunction each of whose terms has one
of two forms:

1. The form

mode of (data object name)& (mode expression)
is used to t e s t whether the mode of a data ob-

j ec t is the same as a known mode.

Example:

mode of pi is real

This mode-test yields the value t t e .

-31-

2 . The form

b

mode of (data object name) (structure-test
operator} is used to d i s s e c t a mode expression
by testing the top-level mode operator i n tha t

expression. The structure-tes t operators are:
is loc
isrow
is s truc t
is tuple
isunion
isproc

-

Example :

mode of X isloc

The ' then' c lause is executed if th is condition is ' t rue ' ,

and within the scope of the' then'clause, the data object
is treated as i f its mode actually were the given mode-
expression, rather than a union - or a f ree .

This statement allows the programmer to te l l the compiler that within
the scope of the ' then' c lause i t may compile acceptable code to
handle a n object with a 'union' mode. -

c. Parts (b) and (c) of the explanation of the 'if' statement apply a l s o
to the 'when' statement,

3 . go to (labe l)

a. Control will pas s to the statement that bears the given labe l .

4 . The iteration statement

This statement h a s several optional par t s , l is ted below in the order
i n which they may appear.

-32-

intentional - blank_page.tif

a e The 'for' -- section is optional. It cons is t s of four c lauses:

1, - for (name of local variable (this functions a s a local declaration))

or

for nonlocal (expression whose value is the address of a variable which
was declared previously)

2 . from { expre s sion)

3. by -_ (expression)

4. (expression)

When the iteration statement is entered, t h e value of t h e 'from' expression is
stored in the 'for' - variable. Before each execution of controlled c lause , t h e cur-
rent value of the 'for' - variable is tes ted against t h e current value of t h e ' to ' -

expression. If the 'for' - value is greater, iteration is terminated. After each
execution of the controlled c lause , the 'for' - variable is incremented by t h e current
value of t he '&' expression.

b . The 'while ' sect ion of t h e i teration statement is optional. It has the syntax:

while (boolean-valued expression)

This expression is evaluated before each execution of the controlled c lause .
Iteration is terminated t h e first t i m e the resulting boolean value is ' f a l s e ' .

c . The ' such that ' part of t h e i teration statement is optional. It cons is t s of j u s t

one clause which has the syntax:

s u c h that (boolea n-valued expression)

This expression is evaluated after evaluation of t he increment and 'while' parts
of t he iteration statement, and before each evaluation of the controlled expression.
If the value of t h e ' such that ' expression is ' f a l s e ' , t h e controlled expression is
not evaluated, and control p a s s e s directly back to the increment-test part of t h e
iteration statement.

d . The controlled clause is designated by 'do ' . - The syntax is:

do - (expression)

-34-

This expression is evaluated only when t h e '&', 'whi le ' , and ' s u c h that ' - tests
a l l succeed . The controlled expression may or may not have a value. The value

of the i teration statement is t h e series of va lues computed by t h e i terated execution
of the controlled expression.
made into a tuple by enclosing t h e i teration statement i n tuple brackets .

Note tha t t h i s series is not a tuple , but may be

- - I Examples of i teration statements-

' This statement computes t h e sum of the even numbered elements of t h e row A .

I Th i s sum is stored i n t e m p .

I
I

for non loca l J from 2 by 2 to 20 - - -
-- do val temp + A . (w J) - t emp,

T h i s statement selects out the non-zero elements of the row 'array' e

for index from 1 t o val indexmax -
such tha t array. (5 1 index) # 0

keep array. (s index) ,

This statement tests whether X = one of the elements of t h e row Y.

(for - index from 1 by 1 to rowlength

do if X = Y. (Val index) - _ -
then go t o L '

else; -
f a l se exit --

L: true) -

-35 -

APPENDIX I : Data Operators

This table l i s t s the pre-defined data operators and the combinations

of operand modes for which each operator is defined.

/
(Let 'm and stand for any mode),

mode or description of operands
symbol , operation representec

--t

val -

0

a loc
or

ref -

Store the value on thc
left into the variable
on the right. The re.

su l t is the left hand
operand

Fetch the value of the
operand, which is a
variable.

Select a component 0:
a structure

Se lec t one of the ele-
ments of a row.

Select one of the bod:
of a generic procedu:

:auses a variable to be
illocated t o hold the
a l u e of the operand.
;pace is al located i n
)ermanent storage, and
vi11 be deallocated
luring garbage collectic
)r when t h e program is
erminated. The addres
jf t h i s space is the re-
:ult of the operator.

left -

'172

s truc t
(* * 0)

- row N o f
'm

, proc . . ,

riqht , mode of resul t

- loc 'xq

lac -

The name
of one of
that
s truc ture
compone

An &t
>O and

c N .

A l i s t in
parenthe
of the mc
of the fo
para met e
of one 01
that proc
dure ' s bc

7y

'332

The mode of that
component.

S .

m
The mode of that body.

e s
la 1

! S

ies.

- l o c q

- 3 6 -

mode of

length of

is

7

6

-

V -

z

+
>
2

<
- <

ispos

i sneq

i szero

+
-
*

guorem

Returns the current
mode of i t s operand.

Returns the current
length of i t s operand.

Identity predicate .

Logical negation.

Logical conjunction

Logical disjunction

Equality predicate

Is not equal to .

Is greater than.

Is greater than or
equal to.

Is less than.

Is less than or equal
to .

True if operand is
numerically greater
than zero. False
otherwise.

True i f operand is
numerically less than
zero, False otherwise

True if operand is
numerically equal to
zero. False otherwis

Addition.

Subtraction.

Multiplication.

The resu l t of A quorer
B is a 2-tup1eI CQ, R)
such that Q * B + R
= A. The s ign of R
will be the same as
the s ign of A.

332

bool

bool

.__

-
in t

int

i n t

- int

-

-
-

i&

in t -

rea 1 -

- real

- rea 1

I"
Lint

int -

m
row . . -

rnl
bool

bool

boo1

-
-

int
int -

rea 1 -

int

i n t

I

-

mod e -

int -

bool

bool

bool

bool

-
-

bool

bool

b d

bool

-

b d

b-

bool

bool

boo1

real -

in t

tuple(int , &t)

-

-37-

/

mod -

t

- abs

Division, the resu l t 0'
A / B being the same
as the first member
of the tuple which is
the resul t of A quorem
B.

Floating point divisior
The resu l t of A - mod
B is the smal les t non-
negative integer con-
gruent to A modulo B.
This is the same a s
the remainder of A/B,
the second member of
t h e tuple result ing
from. A quorem B.

Exponentiation, by
means of repeated
multiplication.

Absolute value.

int -

rea l
int
-
-

int

rea1

_I

-

in t -

r ea l
int -

i n t

i n t

i n t

-
-

i n t -

rea l
in t
I_

-

int

real

i n t

real

.__

-
-
-

-38-

Mode-conversion 9pera torr-

trunc Converts a real to a n k t , truncating the fractional
part.

Examples:

trunc - 2 . 7 - trunc 3 .68
- resul ts i n -2

resul ts i n 3

floor
I__

Converts a real to a n &t, rounding to the next smaller
integer.

Examples :

- trunc - 2 . 7 resul ts in -3 - tmnc 3 .68 resul ts i n 3

ce i l ing Converts a real to a n k t , rounding to the next larger integer.

Examples :

cei l inq - 2 . 7 resul ts in -2
cei l inq 3.68 resul ts i n 4

abs
7

float -

Converts a char to a n i&, which is the index of that character
i n the standard alphabet .

Converts a n &t to a real.
Converts a tuple (int , g t) to a rea l . The tuple [a,P 1 is

Example:

converted to the rea l number (X 2 p .

- float [356,-31 resul ts i n 356 - 3

-38-

Conclusion:

We bel ieve tha t we have arrived a t a useable and practical language i n spite
of our ins i s tence that everything in the languabe be unambiguous. The examples in
Appendix I11 of th i s report a r e written in bas i c BASEL, tha t is, they do not u s e any
extensions except those which are defined within each example.

We hope that you find the examples readable , and agree with u s tha t certain
things a re represented here i n a transparent way, t ha t would be far more obscure in
a language l ike FORTRAN.

-39-

