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Abstract. We extend the notion of quantum information flow defined by @amand
Kashefi [1] for the one-way model][2] and present a necessady safficient condition
for the deterministic computation in this model. The gelieed flow also applied in the
extended model with measurements in the V'), (X, Z) and(Y, Z) planes. We apply both
measurement calculus and the stabiliser formalism to eeniv main theorem which for the
first time gives a full characterization of the determimistomputation in the one-way model.
We present several examples to show how our result improxesstoe traditional notion of
flow, such as geometries (entanglement graph with input atglt) with no flow but having
generalized flow and we discuss how they lead to an optimdkimgntation of the unitaries.
More importantly one can also obtain a better quantum coatjoutdepth with the generalized
flow rather than with flow. We believe our characterizatiosuteis particularly essential for
the study of the algorithms and complexity in the one-way atod
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1. Introduction

Measurement-based quantum computation, and, more spéygjfithe one-way quantum
computation model ]2] provides both a new theoretical dpon and a novel prescription
for implementations of quantum computing. In the standaodi@hof quantum computation
— the circuit model — a computation is described as a netwbukivary single and two-qubit
gates acting on a register of qubits, followed, at the enambgisurement of each qubit. In the
one-way quantum computatianl [2], first a special entanglelfirgubit state called a “graph
state” or “cluster state’|3] is prepared, then the qubitsraeasured in a specified order and
in specified bases.

An important aspect of this model is the way the inherent oamuess of the
measurement outcomes can be accounted for, so that thell cx@mgoutation remains
deterministic. This is accomplished by conditioning theibaf certain measurements upon
the outcome of others, introducing a measurement order.

In [2, 4] a prescription is given for the construction of detéistic measurement-
patterns equivalent to any gate network. Nevertheless,obitiee potential advantages of
this new model is the possibilities it opens up for the depelent and design of quantum
algorithms in a completely new picture, without direct nexse to the circuit model.

Thus an important question is, given a particular graptestat set of measurements,
can these measurements be adapted in such a way that détemminthe computation is
guaranteed? What is the structure of graph states and neeasoiis which can be considered,
such that the computation remains deterministic? In thisepawe provide a general
framework to answer such questions.

Previously, a geometric condition on a graph state knowiflas™, was developed which
guaranteed that graph states satisfying a set of “flow camdit would admit a deterministic
computation, provided measurements were restricted toXh&) plane of the Bloch sphere
[1]. Nevertheless, this condition was not necessary andatidake into account possibilities
of measurements in other planes of the Bloch sphere, andptbeias way graph states
transform under measurement of Pauli-operator obserwdb]e In this article we provide
a “generalized flow” condition. This is a set of geometric ditions on a graph, which are
necessary and sufficient for that state to admit a detertiammise-way quantum computation
under measurements in th&, ), (X, Z) and(Y, Z) planes.

The structure of this article is as follows. We begin by rewigy the “measurement
calculus” [6] — a means of algebraically representing meament patterns in one-way
guantum computation. After reviewing the flow conditionrottuced in([1], we shall then
present definitions of generalised flow and prove its progertWe show how this can be
further generalised in the cases where certain qubits ateated to Pauli measurements
alone before concluding with some examples of the apptinaif these concepts.
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2. Preliminary

We briefly recall the definition of measurement patterns aartbus notions of determinism.
More detailed introductions can be found in [7,[8, 9]. In tipiaper, we will employ
an algebraic approach towards measurement-based quantaputtng (MQC) called, the
Measurement Calculuf€] and its extension [10]. We define an arbitrary pure sirglbit
state by

[+0,6) = cos($)[0) + ¢ sin(§)[1),

and denote its orthogonal state (the opposite point in tbelBSphere) with
|—0,6) = sin(3)[0) — € cos(§)[1) ,

where) < § < 7w and0 < ¢ < 27. A computation, in the extended one-way model, is a
combination of the following commands:

e 1-qubit preparationsy;, to prepare the qubitin state|+); = |+ o):
e 2-qubit “controlledZ” entangling operatorsy;; := AZ;;,
e 1-qubit destructive measurements,”, on plane\ € {(X,Y), (X, Z), (Y, Z)}, defined
by orthogonal projections into:
— [Fxy)a) = [Fra) if A= (XY),
— |[£(x.2)0) = |Fa0) if A= (X, Z),
— [£w.z).0) = [Faz) if A= (Y, 2),
with the convention that- ;) (+¢ 4|; corresponds to the outcomiewhile |—g ;) (—g 4|
corresponds ta,

e 1-qubit Pauli correctionsX; andZ; ,

wherei, j represent the qubits on which each of these operations,appt0 < o <

m. Qubits are measured at most once, therefore we may represambiguously the
outcome of the measurement outcome for qybity s;. To control the non-determinism
of the measurement outcomes, certain corrections will nigtpgon previous measurement
outcomes. These dependent corrections will be writteti;aswith U? = I, andU} = U;.
We will employ some set-theoretic notations, for exampledenotes the complement of a
subsetA.

A measurement pattefi§ = (V, 1,0, \, S), or simply a pattern, is defined by the choice
of V' a finite set of qubits, two possibly overlapping subdets V' andO C V' determining
the pattern inputs and outputs, a finite sequeficé commands acting olr, and a function
A0 — {(X,Y), (X, 2), (Y, Z)} which specifies the “plane” of the measurement on each
measured qubits (i.e. the complement of the output qabitdVe will consider onlyunnable
patterns where no command depends on an outcome not yetnegaso command acts on
a qubit already measured or not yet prepared (except ptegacmmmands), and a qubits
measured (prepared) if and onlyiifs not an output (input).

We are sometime interested standardizepatterns: to put the commands sequence
of the pattern in a particular order without changing the migz of the computation.
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We choose an order where all the preparation commands afipsati.e. right-most),
then all the entanglement commands, followed by the measmts and then corrections.
The standardisation procedure is the basis for the new qddyarchitecture proposed by
measurement-based quantum computing where on performbeakéntanglement in the
beginning followed by local operation and classical comivations. Furthermore, the
rewriting of a pattern to standard form allows one to cheek &hgiven pattern is runnable and
it reveals parallelism in the pattern computation [11].

We use commutation rules to interchange the order of opastio bring them into
this form. Since the entanglement operations are to be ipeei first, when their order
is interchanged with the correction operators they showdpick up the measurement-
dependancy in these corrections. This can be guaranteedshyirg that the entanglement
command is in the normalizer group of the group generatetddygarrection groups. In order
to commute the corrections to the end of the pattern we sinngdythe following equations:
M(X,Y),aXi — )

)

M(X,Y),aZi

7 K3

M(X,Z),aXi

Mi(X,Z),aZZ_ _ M-(X7Z —a
MZ_(Y,Z),aXi _ MZ_(Y,Z),a—Hr
M_(Y,Z),OcZZ_ _ M(Y,Z),—a-l-ﬂ

7 7

Il

=
®
h<

Therefore we have the following simple observation.

Proposition 1 Any one-way MQC model admits a standardization proceduaadf only if
the entanglement operator is normalizer of all the correctoperators.

We write $; (o) for the Hilbert space spanned by the inputs (outputs). fLimeof
a pattern consists simply in executing each command in seguelf n is the number of
measurements (which is also the number of “non-output” tgllthen the run may follow
2" different branches. Each branch is associated with a urbqaey strings of lengthn,
representing the classical outcomes of the measuremeantg #tat branch, and a unique
branch mapA, representing the linear transformation frempto o along that branch.

Branch maps decompose 4s = CII;U, whereCy is a unitary map ovefy, collecting
all corrections on outputg]; is a projection froms, to Ho (wheref is the Hilbert space
spanned by all the qubits) representing the particular oreasents performed along the
branch, and’/ is a unitary embedding (or isometry) frof, to £, collecting the branch
preparations, and entanglements. Therefore

S ALA = Y UTLU = 1

andT'(p) := Y, AspAl is a trace-preserving completely-positive map (cptp-mexplicitly
given as a Kraus decomposition. One says that the patealizes?'.

A pattern is said to bdeterministidf it realizes a cptp-map that sends pure states to pure
states. This is equivalent to saying that branch maps amogional. A pattern is said to
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be strongly deterministievhen branch maps are equal (up to a global phase)for all s,
sy € 73, A, = €152 A,. A pattern is said to beniformly deterministidf it is deterministic
for all values of its measurement angles. Finally a pattesaid to bestepwise deterministit

it is deterministic after performing each single measumnagether with all the corrections
depending on the result of that measurement.

The main result of our paper is a necessary and sufficient ittomdfor strong
uniform determinism based on the geometry of the entangiéesteucture which underlies
a measurement pattern. Let us defin@pan graph statéG, I, O, \) to be a state associated
with an undirected grapty together with two subsets of nodésand O, called inputs and
outputs. We writé/ for the set of nodes i, /¢, andO° for the complements of andO
in V, Ng(i) for the set of neighbours afin G, i ~ j for (i,j) € G, andEg = [[,; Eij
for the global entanglement operator associated'.to/Ne first recall the definition ofiow,
under which one can construct a set of dependent corrediaisthat the obtained pattern is
strongly and uniformly deterministic|[1].

Definition 2 An open graph stat&=, I, O, \), such thatvi € O, \(i) = (X,Y"), hasflow if
there exists a may : O° — I¢ (from measured qubits to prepared qubits) and a partial orde
> overV such that for alli € O°:

— (F1)i ~ f(q),

— (F2)i < f(3),

— (F3)Vk € Ng(f(i)) \ {i} we havei < k.

As one can see, a flow consists of two structures: a funcfiaver vertices and a
matching partial order over vertices. In order to obtain gedeinistic pattern for an open
graph state with flow, dependent corrections will be defingsed on functiorf. The order
of the execution of the commands is given by the partial ondéuced by the flow. The
matching properties between the functiprand the partial order will make the obtained
pattern runnable.

Theorem 1 [1] Suppose the open graph stdt€, 7, O, \), such that/i € O°, A\(i) = (X,Y),
has flow( f, >), then the pattern:

Pre = o (X Zroianm M) e N,

where the product follows the dependency orderis runnable, uniformly and strongly
deterministic, and realizes the unitary embedding:

Ue = (ILicor(+xv)ali) EaNie.

The above theorem provides a necessary condition for detismmfor the one-way model
considering only measurements in th€,Y") plane, which encompasses for example, the
measurement patterns proposed [2, 12]. Nevertheless) ibeaiseful to construct patterns
which contain measurements in other planés [9], and théesmaturally when one uses the
graph transformation rules associated with Pauli measem&st{5] to reduce the size of a
pattern. As we shall describe in this article one can extbedbtation of flow to obtain a
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necessary and sufficient condition considering measurenierall the (X,Y), (X, Z) and
(Y, Z) planes. This will lead to a full characterization of detemisiic computation in the
MQC models. As a result we also obtain a tight bound on deptipdexity that improves the
presented results in [11].

3. Generalized Flow

In order to describe the motivation behind our constructbthe generalized flow we first
briefly explain the main idea behind the proof of the flow tle@or(Theoreni]l). Recall that
the graph stabiliser[5| [13] at qubit: is defined as(; := X;(][,cs) Z;) and one has the
following relation:

KiEgNye = EqNye . (1)

The proof of Theoreni]l is based on the following simple okesion. We could
make a measuremeMi(X’Y)’a “deterministic” (corrected) if it could be pre-composed by
an anachronicak;* correction (i.e. conditioned on the outcome of a measurénvlich
hasn’t happened yet). This unphysical scenario is a useftilrgg point for our proof.

(txv)ali = Mz—(Xy)’aZfi-

The flow construction guarantees that such a deterministiteqm with anachronical
corrections can be transformed into a runnable patternienddedependencies now do respect
the proper causal ordering. It is easy to verify that, thegpat; . in Theoreni]l can be
equivalently written in terms of anachronical measuremeast

Pro = [Meoe (M 20K, ) BaNie

The key observation which allows us to tranform this into amable pattern is that the
flow conditions mean that there exists a stabiliggf;) which when composed with the
anachronical correction, forms an operator which commuwttsthe measurement, and thus
the pattern can be brought into runnable order.

A natural way to extend this idea is to consider a set of vestias acorrecting set
Hence instead of working with a functioh: O¢ — [ defining the correcting vertices, we
will have a functiong : O¢ — P!° defining the correcting sets of vertices, whgre denotes
the power set of all the subsets of verticed'in It is important to note that the condition on
these correcting sets will depend on the plane which the uneasent will be performed, as
measurement in different planes require a different ammacbal correction. We define the odd
neighborhood of a set of verticés to be the set Oddy') = {u, |[Ng(u) N K| =1 mod 2}.

Definition 3 An open graph statéG, 7,0, \) has generalized flowif there exists a map
g : O° — PI" (from measured qubits to a subset of prepared qubits) andraaparder
< overV such that for alli € O¢,

—(G1)ifj € g(i) andi # j theni < j,

—(G2)ifj <iandi # jthenj ¢ Odd(g(7)),
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Past Current Future

Past Current { Future

-----

(X,Y) Plane (X,Z) Plane

Past { Current { Future
........... <~ odd

(Y,Z) Plane

Figure 1. The pictorial presentation of the generalised flow condgi¢G1-G5) for different
measurement planes. The straight lines (blue) stand fotipteuedges in the entanglement
graph where the labels give the parity of the number of thesaections and the doted straight
lines (red) for a single edge. The single qubit in Curren¢éfadenote the qubit to be measured,
its correcting set lays in Future layer (black closed curvié)e neighbours of the correcting
set belonging to Past layer are denoted by doted closed cure.

—(G3)ifA(i) = (X,Y) theni ¢ g(i) andi € Oddg(i)),
—(G4) ifA\(i) = (X, Z) theni € g(:) andi € Odd(g(7)),
—(G5) ifA(i) = (Y, Z) theni € g(i) andi ¢ Oddg(i)).

One can consider the partial orderas a notion of time. Then, condition (G2) says that all
the vertices with an odd number of connection to the comgcsietg(:) should belong to
the past of.. These conditions can be better understood pictorialljiuestrated in Figuréll.
Similar to the Theoreiml 1 we will apply dependent stabilisgrections on all the qubits in the
correcting set. The evenness or oddness condition on theerushthe connections between
a vertex and its correcting set and neighbors will guaratitaethe anachronical correction
on qubiti can be transformed to a correction with casual dependencies

4. Determinism Theorem

A necessary and sufficient condition for determinism in tktereded one-way model is given
in the following two theorems. It is important to note thatstitondition can be easily
extended to any other MQC modeks.d. teleportation-based models [14,! 15]), since there
exist compositional embeddings from the one-way modelwtaér MQC models [6]. Recall
thatg(i), whereg is a generalised flow, is a subset of vertices.
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Theorem 2 Suppose the open graph stété, I, O, \) has generalised floWy, >), then the
pattern:

T Al
Poo = o <Xg<z')\{z}20dd<g<z>> M; )EGNIC’

where the product follows the dependency orderis runnable, uniformly, strongly and
stepwise deterministic, and realizes the unitary embeagdin

Ug = (Hi€0c<+)\(i),ai 2) EqNre .

Theorem 3 Suppose the patter§8 is uniformly, strongly and stepwise deterministic, then
the underlying geometry dff has generalized flow and the pattern realizes the unitary
embedding:

Us = ([Lcoe{*trt)aili) EcNie.

The next lemma will be used in the proof of Theorein 3 and itatss the role that the
strong condition of uniformity will play. Denote b,y a projection to stat@)).

Lemma 4 If for all « in the (X, 2),(X,Y) or (Y, Z) plane P,|v)) = €@ P,|y') then
[¥) = e?|¥)

Proof. We write the proof for the case of a projection (X, Z) plane as other cases are
similar. It suffices to consider the anglescof= {0, 7/2, 7}, or in other words, measurements
of X andZ observables. First we write the states in the basis of theneartors of7:

[¥) = al0)|dho) + a'[1)[¢n)  [¢) = blO)[¢hg) + B[1)[¢1) -

The lemma condition witlx = 0 anda = 7 (i.e. projections ont¢0) and|1)) implies that

o) = [¥0) » [¥1) = |41) .

We also obtaim = b anda’ = €18’ and therefore

[¢') = €% (al0) o) + O =)a/[1) ) .

Now consider the projection onte-) state ( = 7/2) which implies

altho) + d'|1h1) = €(alh) + '€’ =)y )) .

Thuse!#1=%0) = 1 or ¢’ = 0 which completes the proof)
The following equations on anachronical corrections plegydentral rule in the proof of
theoreni 2:
(t(xyyali = M0z (2)
(+x2yali = MEDOX 1 23 3)
(w2l = MIDX (4)
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Proof of Theorem[2. We prove one case, where all the measurements are assumedhto b
(Y, Z) plane, all other cases have a similar proof. Clearly, theegdized flow conditions
make the following pattern a runnable one,

[ > Si Sq (Y,Z),ai
Poc = llico: (Xg(n\{i}ZOdd(g(z‘)) M, ) Bl
By commuting the corrections and using the definition of treg stabiliser/<;, we have:

PBoc = [oe M2 X7 Ko EGN e

1€0° )

Note that to derive the above equality we have also used ithal tequations”;' 77" = I to
complete the missing part of any stabiliser. Recall thatdtgon (G2) for(Y, Z) measurement
will guarantee to have the required even number of such ngssioperators. Finally from
equations 1 anf]4 we obtain the following uniformly, strgnghd stepwise deterministic
pattern

PBo.c = (HieOc<+(Y,Z),ai i) EaNpe .

O

Proof of Theorem[3. We start from the end of the pattern computatioe. (ast measurement
commands). LetP,c be the projector over the staf@oc|+y)q,).- Suppose the last
measurement is in the plaf&, Y) and is performed on qubit, it creates then the following

two branches
PocEaNy\1|) 1 sp =0

J\/[’r(ZX,Y),an
W)
POcZnE(;Nv\[|¢>[ Sp — 1

where we have used the fact,, |Z, = (+a,|- Now from the stepwise determinism there
exists a collection of correctiofi4 on output qubit such that

CaPocZyEcNy\(|V); = Poc EgNv\1|¢) 1,
since the corrections are performed on output qubit we ceamuateC 4 with Poc and write
PocCaZnEcNy\1|Y)1 = Poc EgNw\r|Y)r .

The above equation is valid for any valuewf (uniformity condition) and thus according to
lemma4,CuZ, EcNy\(|V)r = EcNy\ (V) 1, s0CaZ, stabilises the stat&; Ny ;|); and
since it is a Pauli operator it can be written as a product @fhuli group generators (graph
stabiliser,K;), thus there exists a s8tC V such that

CAZn = HuESXuZN(u) .

It remains to prove that is indeed the correcting set of qubitand satisfies the condition of
the generalised flow conditions. First we show that / = 0, let|G) = EgNv\;|+);, then
for any arbitrary subsek” C I sinceAN I = () we have

CaZnEaN\ 1 Zic|+)1 = CaZn Zk|G) = Zk|G) .
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In particular forK” = () we obtainC'4 Z,,|G) = |G). Suppose now there exists S N I, and
setK = {e}, sincee € S thenZ, anti commutes witlC, and therefor

CaZnZ.|G) = — 2.0 Zn|G) = —Z.|G) |

which leads to a contradiction and proves) I = ().

On the other hand sincé does not intersect with the set of already measured qubjts an
u € S cannot act on a measured qubit as it will not be simplified latel X, on the other
side will appear. AlsaV(u) should see measured qubits evenly so fatn the previously
measured qubit will cancel out each other as well. Therefoigthe correcting set for the
qubitn in terms of Definitiorl B. The presented argument can be silpitarried out for all
the measurements performed in the previous stages whicpletas the proof]

5. Pauli Measurements

Pauli measurements play a central role in one-way quantunpuating. In particular, it is
known that the action of such a measurement on a graph stateesve the remaining qubits
in a graph state (up to a local Clifford-group correctior]) [Befinition[3 provides conditions
for determinism when single qubits at any angle in specifiediB-sphere planes are allowed.
The special properties of Pauli measurements (for exantaethey simultaneously lie in two
measurement-planes) mean that if one restricts the measnotef certain qubits to certain
specific Pauli measurements, one must extend the gendréllase conditions in order to
account for these extra properties.

In this section, we introduce such an extension. We will i donvention that the
labeling function\(7) for any non output qubit, is either a plan £X,Y), (X, Z), or (Y, Z)
—oravector =X, Y, or Z (i.e. Pauli measurements). First, notice that a Pauli measuitemen
say X, can be interpreted as(&’,Y) or (X, Z) measurement and thus it may satisfies the
conditions of either 4X,Y") or a (X, Z) measurement. Second, when a qubit is measured
according to a Pauli operator, s&j, then, after the measurement, the state of this qubit
takes+X as its stabiliser. We use this property to allow alreadysunead qubits to be
included in a correcting set. Finally the following relatibetween Pauli correction and Pauli
measurements will be used for the Pauli flow construction

MXX = MX (5)
MYY = MY (6)
M%7 = M? (7)

Definition 5 An open graph statéG, I, O, \) hasPauli flowif there exists a map : O¢ —
P (from measured qubits to a subset of prepared qubits) andtiaparder < overV such
that for all i € O¢,

—(P1)ifj € p(i), i # j, andA(j) ¢ {X,Y} theni < j,

—(P2)ifj <1i,i# j,and\(j) ¢ {Y, Z} thenj ¢ Odd(p(7)),

—(P3)ifj <1i,j € p(i) and\(j) = Y thenj € Odd(p(7)),
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Figure 2. A graph with generalised flow but no flow{a) = d, g(b) = ¢, g(¢) = {d, f}. The
blue arrows represent the flow edges, where as black arrdeated a virtual flow edge, (an
edge that is not an edge of the graph state).

—(P4) ifA(i) = (X,Y) theni ¢ p(:i) andi € Odd(p(7)),
—(P5) ifA(i) = (X, Z) theni € p(i) andi € Odd(p(7)),
—(P6) ifA(7) = (Y, Z) theni € p(:) andi ¢ Odd(p(7)),
—(P7) ifA(7) = X theni € Odd(p(7)),

—(P8) ifA(i) = Z theni € p(i),

—(P9) ifA(7) = Y then either: i ¢ p(i) & i € Odd(p(i)) or i€ p(i) & i ¢ Oddp(i)).
Theorem 4 Suppose the open graph sta€e, 7, O, \) has Pauli flow(g, >), then the pattern:
S S (7 Ne?]
Poo = o (Xgu')n{j i Zoaanis o M2 ) EaNie,

where the product follows the dependency ordeiis deterministic and realizes the unitary
embedding:

Ug = (Hieoc {(Fa0),0

Proof: The proof is similar to the proof of theorem 2. (#1), if A(j) € {X,Y}, j
may be in thep(i) even ifj < i since MXX; = M;X and M} X;Z; = M} . Notice that
if \(j) =Y, j <iandj € p(i) thenj must be in Od¢h(i)) — (P3) — because of the;
command inV} X, Z; = MY . In(P2),if A\(j) = Z, thenj may be in Oddp(i)) evenifj < i,
sinceM? Z; = M,». The condition\(j) # Y in (P2) is necessary because(d?3). Finally,
(PT7),(P8),and(P9) are obtained frongP4), (P5), and(P6) since aX measurement is both
a(X,Y)and a(X, Z) measurement, and so oh.

i) EcNie .

6. Examples

Trivially, any open graph state with a flow also has a genszdliflow, but the following set
of examples show how the generalised flow can be beneficial opken graph state in Figure
has no flow (due the cyclic connections), but it admits a ggized flow. This example
demonstrates the fact having flow is not a necessary conditio uniform determinism,
contrary to the existence of the generalized flow, as it iswshio theoreni B.

In relation to the circuit model, having a generalised fload¢o an optimal realisation.
It is known that given a pattern where the underlying geoynk#s flow one can directly
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Figure 3. A graph with flow: f(a) = d, f(b) = e, f(¢) = f. The blue arrows represent the
flow edges and the partial order over the verticesis {b, d} < {e,c} < f.

1P +H :i X
Input (—1’»-«> PH H <1»—\:-) Output

! PLUHL ¢

Figure 4. The circuit implementation of the pattern in Figlide 3, withntrolled-Z, phase
P(—«) and Hadamard/ gates.

PHH

iy

Figure 5. The acausal circuit implementation of the pattern in Fiflire

decompose the pattern into a circuit with no auxiliary gsithéat implements the same unitary
[1]. Consider for example the pattern given in Figlure 3 thgilements the following pattern
(all measurement are (X, Y) plane)

X{XEMY Xe 76 M) X278 M® EoyFayEpeEecEep NgNNy

567 Sp

that can be decomposed to the circuit given in Figlire 4 usiagonstruction ofJ1]. The base
of this procedure is to replace the patté(@'iMiaEiij with Phase and Hadamard gate and
the remaining edges of the graph with citlgates.

Now if we follow the same construction for pattern in Figlie¢hat has generalised
flow but no flow, in order to remove all the auxiliary qubits, witain acausal circuit (not
runnable), Figuré]5. Of course, there exists another castalit implementing the same
unitary but it might need more gates. This suggest that havems with generalised flow
may implement more efficiently a given unitary.

Even if a graph has a flow, looking for a generalized flow is a teajecrease the depth of
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a1 > b1 > c1 O
> b2 > czO
> bs. > csO

Figure 6. Open graph state having a flow of deptand a generalized flow of dep2h

the computationi.e. the parallel execution time. For instance, the open gragie gt Figure
has a flow functiory given below

f(ai>:bi & f(bi):Cz’,

with the corresponding partial order being < {b1, a2} < {c1,b2,a3} < {c2,b3} < ¢3 and
hence the depth of this flow is We know the flow functiory is unique[[16] and since eadh
must be greater thar) and eachu; is greater tham,_,, thus the minimal depth is. However,
this open graph state has also a generalized flow defined as

glar) ={b1, b2} & glaz) ={b2, b3} & glaz) =03 & g(bi) = ¢,

with partial order{ay, as, a3} < {b1, b, b3} with depth2. On can easily extend this example
(Figurel®) to construct for any given, an open graph state witin vertices having no flow
of depth less than + 1, but a generalized flow of depth

Our final examples deal with the case of Pauli flow. An open lyraiph no generalized
flow is not uniformly deterministic, but it can be still detenistic if one restrict some of
the angel of measurements to Pauli. For instance, the o gitate in Figurgl 7, has no
generalized flow, but it has the following Pauli flow with deg when all the non output
qubits areX-measured (implementing SWAP operator).

p(l) = {3,7,10}
p(2) = {579}

p(3) = {47 8, 10}
p(4) = {7,9,10}
p(5) = {47 6, 9}

p(6) = {9}

p(7) = {4,6,8,9,10}
p(8) = {10}

p(9) = {11}

p(10) = {12}

Finally, Pauli flow is not necessary for determinism in a ¢grapate pattern whose
measurements are solely Pauli - since these do not requiradaptive measurements. An
example of this is the open graph state in Figure 8, has na fRaulbut is deterministic and
realizes also the SWAP operator [17].
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1 3 6 9. 110

2 5, 8 10. 12@

Figure 7. Open graph state having no generalized flow but having a Pawli

1 3 6 9 12O

2 5 8 11 13@

Figure 8. An open graph state with no Pauli or generalised flow impleimgra deterministic
pattern for the SWAP operator.

7. Conclusion

What makes the measurement-based quantum computing Isggetti@ fact that one can
employ probabilistic measurement operators and yet paréodeterministic computation by
imposing a causal dependent structure over the measuresegience. On the other hand
the MQC highlights the role of entanglement as a resourcgd@antum computing. Hence
a full understanding of the MQC depends on gaining insigtd the interplay of these two
ingredients.

In this article we have extended the notion of flow [1] on theorgetry of the
entanglement graph required for a one-way computing toessdihe above questions. We
have presented for the first time a full characterisationaiedministic computation in the
one-way model independent of any reference to the circudehaHaving generalised flow
is a necessary and sufficient condition for uniform deteisnin On the other hand if one is
willing to restrict to a particular set of angles such as Paaasurements then the Pauli flow
criteria might be used.

One interesting consequence of patterns with generalisedfiut no flow) is that they
can admit very compact implementations of a given unitgasslliustrated in our examples).
In particular, the generalised flow admits a great deal oflfléty in the causal structure of
the corrections which can have have little in common with shrecture of the associated
guantum circuit. Further investigation of such featurelélvd a line of future research.

A further important open question is how one can design ani&fii algorithm to find
generalised flow given an open graph state, which would agttipattern design (as proposed
in [18]). In the particular case wheté| = |O|, if a geometry has flow it is unique and



Generalized Flow and Determinism 15

can be found efficiently [18, 16, 19], using a combination efwork flow algorithms, and
Tarjan’s algorithm to avoid acausal sequences of measutsr{ferming “vicious circuits”),
as described in detail in [16, 19].

We conjecture that an algorithm for generalised flow will lmikar to [16,/19]. First one
would find a maximal collection of disjoint Input-Output patto attempt to define the flow
function. Then if the obtained partial order has viciouguwit one can attempt to cancel its
effect using the additional vertices in the correcting set.

We believe this work can form a basis for the development ee&hquantum algorithms
conceived solely in the language of measurement-baseduyuaomputation.
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