78 research outputs found

    Distal residue-CO interaction in carbonmonoxy myoglobins: a molecular dynamics study of three distal mutants.

    Get PDF
    Six 90-ps molecular dynamics trajectories, two for each of three distal mutants of sperm whale carbonmonoxy myoglobin, are reported; solvent waters within 16 A of the active site have been included. In both His64GIn trajectories, the distal side chain remains part of the heme pocket, forming a "closed" conformation similar to that of the wild type 64N delta H tautomer. Despite a connectivity more closely resembling the N epsilon H histidine tautomer, close interactions with the carbonyl ligand similar to those observed for the wild type 64N epsilon H tautomer are prevented in this mutant by repulsive interactions between the carbonyl O and the 64O epsilon. The aliphatic distal side chain of the His64Leu mutant shows little interaction with the carbonyl ligand in either His64Leu trajectory. Solvent water molecules move into and out of the active site in the His64Gly mutant trajectories; during all the other carbonmonoxy myoglobin trajectories, including the wild type distal tautomers considered in an earlier work, solvent molecules rarely encroach closer than 6 A of the active site. These results are consistent with a recent structural interpretation of the wild type infrared spectrum, and the current reinterpretation that the distal-ligand interaction in carbonmonoxy myoglobin is largely electrostatic, not steric, in nature

    The distal residue-CO interaction in carbonmonoxy myoglobins: a molecular dynamics study of two distal histidine tautomers.

    No full text
    Four independent 90 ps molecular dynamics simulations of sperm-whale wild-type carbonmonoxy myoglobin (MbCO) have been calculated using a new AMBER force field for the haem prosthetic group. Two trajectories have the distal 64N delta nitrogen protonated, and two have the 64N epsilon nitrogen protonated; all water molecules within 16 A of the carbonyl O are included. In three trajectories, the distal residue remains part of the haem pocket, with the protonated distal nitrogen pointing into the active site. This is in contrast with the neutron diffraction crystal structure, but is consistent with the solution phase CO stretching frequencies (upsilon CO) of MbCO and various of its mutants. There are significant differences in the "closed" pocket structures found for each tautomer: the 64N epsilon H trajectories both show stable distal-CO interactions, whereas the 64N delta H tautomer) has a weaker interaction resulting in a more mobile distal side chain. One trajectory (a 64N delta H tautomer) has the distal histidine moving out into the "solvent", leaving the pocket in an "open" structure, with a large unhindered entrance to the active site. These trajectories suggest that the three upsilon CO frequencies observed for wild-type MbCO in solution, rather than representing significantly different Fe-C-O geometries as such, arise from three different haem pocket structures, each with different electric fields at the ligand. Each pocket structure corresponds to a different distal histidine conformer: the A3 band to the 64N epsilon H tautomer, the A1,2 band to the 64N delta H tautomer, and the A0 band to the absence of any significant interaction with the distal side chain

    Congenital glaucoma in Wagner syndrome

    No full text
    Item does not contain fulltextWagner syndrome is a rare inherited vitreoretinopathy. We describe 3 related patients with Wagner syndrome who presented with congenital glaucoma at age 3 months and required multiple surgical interventions to control their intraocular pressure. All experienced visual loss and glaucomatous optic neuropathy
    • …
    corecore