Distal residue-CO interaction in carbonmonoxy myoglobins: a molecular dynamics study of three distal mutants.

Abstract

Six 90-ps molecular dynamics trajectories, two for each of three distal mutants of sperm whale carbonmonoxy myoglobin, are reported; solvent waters within 16 A of the active site have been included. In both His64GIn trajectories, the distal side chain remains part of the heme pocket, forming a "closed" conformation similar to that of the wild type 64N delta H tautomer. Despite a connectivity more closely resembling the N epsilon H histidine tautomer, close interactions with the carbonyl ligand similar to those observed for the wild type 64N epsilon H tautomer are prevented in this mutant by repulsive interactions between the carbonyl O and the 64O epsilon. The aliphatic distal side chain of the His64Leu mutant shows little interaction with the carbonyl ligand in either His64Leu trajectory. Solvent water molecules move into and out of the active site in the His64Gly mutant trajectories; during all the other carbonmonoxy myoglobin trajectories, including the wild type distal tautomers considered in an earlier work, solvent molecules rarely encroach closer than 6 A of the active site. These results are consistent with a recent structural interpretation of the wild type infrared spectrum, and the current reinterpretation that the distal-ligand interaction in carbonmonoxy myoglobin is largely electrostatic, not steric, in nature

    Similar works