46 research outputs found

    The Concept of Sustainable Development and Its Impact on the Shaping of Modern International Relations through Global Agreements

    Get PDF
    The goal of this article is a depiction of the process of the molding of the concept of sustainable development as well as a look at the influence that this concept has exerted on contemporary international politics, especially taking into account agreements of worldwide scope. This article is also an effort at demonstrating that the foundations of the concept of sustainable development can be traced to certain economic theories. The final section of this article is devoted to the characteristics of individual conferences initiated by the United Nations in order to promote enduring and sustainable development on a world scale. Also presented are the achievements of the individual conferences and their roles in demarcating universally obligatory principles and standards of sustainable development.Celem niniejszego artykułu jest scharakteryzowanie genezy kształtowania się Koncepcji Zrównoważonego Rozwoju, a także wskazanie, jaki wpływ miała ona na ukształtowanie się stosunków międzynarodowych w zakresie ochrony środowiska i rozwiązywania problemów społecznych. Przedmiotem analizy są także teorie ekonomiczne, które stały się fundamentem dla wykrystalizowania się koncepcji zrównoważonego rozwoju. Poniższy artykuł jest także próbą wykazania, iż konferencje organizowane przez ONZ na rzecz trwałego i zrównoważonego rozwoju, stały się siła napędową do rozpowszechnienia tej koncepcji w skali światowej

    The influence of the disordered dipole subsystem on the thermal conductivity of the CO solid at low temperatures

    No full text
    The thermal conductivity of solid CO was investigated in the temperature range 1–20 K. The experimental temperature dependence of thermal conductivity of solid CO was described using the time-relaxation method within the Debye model. The comparison of the experimental temperature dependences of the thermal conductivity of N₂ and CO shows that in the case of CO there is an additional large phonon scattering at temperatures near the maximum. The analysis of the experimental data indicates that this scattering is caused by the frozen disordered dipole subsystem similar to a dipole glass. The scattering is described by the resonant phonon scattering on tunnelling states and on low-energy quasi-harmonic oscillations within the soft potential model

    Heat transfer in Ar and N₂ doped solid CO

    No full text
    The measurements of thermal conductivity coefficient of a solid carbon monoxide crystal containing argon and nitrogen admixtures at different concentrations (1.5, 3, 6, 12.5, 25% for N2 and 0.5, 1, 1.25, 2, 4% for Ar) were performed in the temperature range from 1.5 to 40 K by steady-state heat flow method. For analysis of the experimental data the Callaway method in the framework of the Debye model was used. The contribution of various mechanisms of phonon scattering, including scattering by disordered dipoles of the CO matrix, to the thermal conductivity of CO–N₂ and CO–Ar solid solutions were taken into account

    The peculiarities of heat transfer in CO₂ and N₂O solids at low temperatures

    No full text
    The thermal conductivities of CO₂ and N₂O solids have been investigated in the low-temperature range 1–40 K. The thermal conductivities of CO₂ and N₂O are large compared with those of simple molecular crystals such as N₂, CO, or O₂ in the whole investigated temperature range. Analysis of the experimental data by the Callaway method shows that relatively large size of crystalline grains, low density of dislocations and weak phonon–phonon interaction might be the reasons for the good thermal conduction in these crystals at temperatures near the maxima. A comparison between calculated values of the intensity of normal phonon scattering processes and experiment gives evidence that in N₂O there is an additional (in comparison with CO₂) giant scattering of phonons. This scattering is described in the frameworks of soft potential model by the resonance phonon scattering on tunnel states and low-energy vibratons

    Thermal conductivity of argon–SiO₂ cryocrystal nanocomposite

    No full text
    The effective thermal conductivity of samples of cryocrystal nanocomposite obtained from argon and SiO2 nanopowder was determined in the temperature interval 2–35 K using the steady-state method. The thermal conductivity of crystalline argon with nanoparticles of amorphous silica oxide embedded in its structure shows a weak dependence on particle linear dimension in the interval 5–42 nm. The temperature dependence of the thermal conductivity of the nanocomposites can be well approximated by taking into account only the two mechanisms of heat carrier scattering: phonon-phonon interaction in U-processes and scattering of phonons by dislocations

    Excess thermal resistivity in N₂–CO solid solution at low carbon monoxide concentration

    No full text
    The results of measurements of the thermal conductivity of pure and carbon-monoxide-doped nitrogen crystals, for samples containing up to 0.7% of CO molecules, in the temperature range 1.2–26 K are presented. From the preliminary analysis it results that the interaction of phonons with admixture molecule featuring the same mass, as the host molecule, is relatively weak and depends weakly on the admixture concentration within investigated range of carbon monoxide in nitrogen crystal

    Investigations of thermal conductivity of simple van der Waals crystal-based nanocomposites

    No full text
    The experimental setup for obtaining and determination of the thermal conductivity of simple van der Waals crystal-based nanocomposites is described. Preliminary thermal conductivity results of measurements carried out in the temperature range 1–40 K on two samples of methane crystals containing nanoparticles of hydroxyapatite are presented. These results confirm usability of the setup and its suitability as a proper experimental method for investigations of the thermal conductivity of the nanocomposites

    Establishment, growth and yield potential of the perennial grass Miscanthus x giganteus on degraded coal mine soils

    Get PDF
    BBS/E/W/10963A01Miscanthus x giganteus is a giant C4 grass native to Asia. Unlike most C4 species, it is relatively cold tolerant due to adaptations across a wide range of altitudes. These grasses are characterized by high productivity and low input requirements, making them excellent candidates for bioenergy feedstock production. The aim of this study was to investigate the potential for growing Miscanthus on extremely marginal soils, degraded by open lignite (brown coal) mining. Field experiments were established within three blocks situated on waste heaps originating from the lignite mine. Analyses were conducted over the first 3 years following Miscanthus cultivation, focusing on the effect of organic and mineral fertilization on crop growth, development and yield in this extreme environment. The following levels of fertilization were implemented between the blocks: the control plot with no fertilization (D0), a plot with sewage sludge (D1), a plot with an identical amount of sewage sludge plus one dose of mineral fertilizer (D2) and a plot with an identical amount of sewage sludge plus a double dose of mineral fertilizer (D3). Crop development and characteristics (plant height, tillering, and biomass yield [dry matter]) were measured throughout the study period and analyzed using Analysis of Variance (ANOVA). Significant differences were apparent between plant development and 3rd year biomass production over the course of the study (0.964 kg plant-1 for DO compared to 1.503 kg plant-1 for D1). Soil analyses conducted over the course of the experiment showed that organic carbon levels within the soil increased significantly following the cultivation of Miscanthus, and overall, pH decreased. With the exception of iron, macronutrient concentrations remained stable throughout. The promising yields and positive effects of Miscanthus on the degraded soil suggests that long term plantations on land otherwise unsuitable for agriculture may prove to be of great environmental and economic significancepublishersversionPeer reviewe

    Thermal conductivity of donor-doped GaN measured with 3ω and stationary methods

    No full text
    The thermal conductivity of three single crystal samples of n-type gallium nitride with electron densities of 4.0⋅10¹⁶, 2.6⋅10¹⁸, and 1.1⋅10²⁰ cm⁻³ has been determined in the temperature range 4–320 K. The measurements were carried out within the ab plane using the stationary method. The thermal conductivity depends strongly on the donor concentration. The analysis within the Callaway approach and the Debye model shows a significant influence of phonon–electron scattering on the thermal conductivity of the samples. In addition, some preliminary results obtained along the c axes of GaN layered samples are presented. The latter measurements have been carried out using the 3ω method

    Genome biology of the paleotetraploid perennial biomass crop Miscanthus

    Get PDF
    Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. x giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses
    corecore