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Miscanthus × giganteus is a giant C4 grass native to Asia. Unlike most C4 species, it
is relatively cold tolerant due to adaptations across a wide range of altitudes. These
grasses are characterized by high productivity and low input requirements, making
them excellent candidates for bioenergy feedstock production. The aim of this study
was to investigate the potential for growing Miscanthus on extremely marginal soils,
degraded by open lignite (brown coal) mining. Field experiments were established
within three blocks situated on waste heaps originating from the lignite mine. Analyses
were conducted over the first 3 years following Miscanthus cultivation, focusing on the
effect of organic and mineral fertilization on crop growth, development and yield in this
extreme environment. The following levels of fertilization were implemented between
the blocks: the control plot with no fertilization (D0), a plot with sewage sludge (D1),
a plot with an identical amount of sewage sludge plus one dose of mineral fertilizer
(D2) and a plot with an identical amount of sewage sludge plus a double dose of
mineral fertilizer (D3). Crop development and characteristics (plant height, tillering, and
biomass yield [dry matter]) were measured throughout the study period and analyzed
using Analysis of Variance (ANOVA). Significant differences were apparent between plant
development and 3rd year biomass production over the course of the study (0.964 kg
plant−1 for DO compared to 1.503 kg plant−1 for D1). Soil analyses conducted over the
course of the experiment showed that organic carbon levels within the soil increased
significantly following the cultivation of Miscanthus, and overall, pH decreased. With
the exception of iron, macronutrient concentrations remained stable throughout. The
promising yields and positive effects of Miscanthus on the degraded soil suggests that
long term plantations on land otherwise unsuitable for agriculture may prove to be of
great environmental and economic significance.
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INTRODUCTION

There is growing European and global interest in the share
of green energy within the overall energy budget of member
states. In accordance with the recommendations of the European
Commission, the European Union agreed to an increased
contribution to total energy from renewables to on average
of 20% by 2020 (The European Parliament, and the council
of the European Union, 2009). Of this 20%, 60% is to
be sourced from perennial energy crops (e.g., Miscanthus,
willow, poplar, etc.), without impacting on food production.
This implies that such energy crops are to be grown on
more marginal agricultural land (FAO, 1999; Hastings et al.,
2009; Communication from the Commission to the European
Parliament, 2014), typically of poor quality and unsuitable for
conventional crop cultivation. Such land is often a result of
contamination through industrial activity, e.g., heavy metal
burdens or general degradation by mining. In Poland, primary
areas of concern are waste heaps left after opencast lignite
mining. The reclamation process for such areas can be
extremely challenging and prolonged since soils in those heaps
are mineral, sterile rocks lacking the organic layer required
to provide an optimal environment for plant growth and
development.

In response to these challenges, this study tests the growth
potential of M. × giganteus (M×g) as an aid to reclamation
of open cast lignite mining areas. M×g is a high yielding,
low input, perennial, giant grass, belonging to the group
of C4 carbon pathway plants (Jeżowski, 1994, 2001; Deuter
and Jeżowski, 2000; Heaton et al., 2004; Sacks et al., 2013).
The potential of the crop for biomass, bioenergy and biofuel
production is widely recognized (El Bassam, 1997; Deuter
and Jeżowski, 1998; Lewandowski, 2006; Hastings et al., 2008;
Faber and Kuś, 2009; Chung and Kim, 2012; Clifton-Brown
et al., 2013). Moreover, Miscanthus can play a useful role in
improving soil structure and levels of organic matter (Jeżowski,
1994; Majtkowski, 1998; Faber et al., 2007). The crop is
characterized by extensive root/rhizome networks, that can
reduce soil compaction and allow a greater water buffering
capacity (Wanat et al., 2013). In addition, the plants can input
relatively high levels of organic material into the soil each year
(Faber et al., 2007). Approximately 30% of the total annual
biomass production (leaf litter drop) will fall to the ground
over winter (Lewandowski et al., 2000; Clifton-Brown et al.,
2001); a significant proportion of this is re-cycled into the
soil as organic matter (Hansen et al., 2004; McCalmont et al.,
2017).

The primary aim of this study was to investigate the potential
for growth, development and yield of M×g in the first 3 years
following cultivation in the poor soil conditions of post mining
waste heaps. The following hypotheses were tested:

H1: M×g can be successfully established and produce viable
yields on post mining soils after the third year of growth
following preliminary reclamation measures prior to planting.
H0: Post mining land in the first few years of reclamation is not
suitable for the successful establishment of M×g.

Additionally, it was intended to determine if the plantation of
the grasses on such soils could play a useful, or even profitable
role, in the reclamation of these soils following appropriate
cultivation and fertilization procedures.

MATERIALS AND METHODS

Plant Material
The planted material was the clonal, Miscanthus × giganteus
(M×g); a naturally occurring sterile hybrid formed through the
crossing of M. × sinensis and M. × sacchariflorus (Greef and
Deuter, 1993). The initial material for selection was a clone
of M×g imported to Poznań in 1998 by the Institute of Plant
Genetics, the Polish Academy of Sciences (IPG PAS) from
TINPLANT GmbH in Klein Wanzleben (Germany). The best
plants, selected by their yields of biomass and reproduced using
rhizomes, are still growing today in the collection plot of IPG PAS.

Field Trials
Growth and yield potential of the M×g plants was assessed
during the period from May 2012 to February 2015 at field trials
established in reclaimed areas of waste heaps at the Adamów open
lignite mine near Turek. This site is located at the eastern side
of the Wielkopolska region (53◦ 43′ N, 18◦ 41′ E), consisting
largely of mine spoil arranged in biologically inactive heaps
containing few plant available nutrients. There is a distinct
contrast between these sites and natural soils, which have organic,
biologically active upper layers; post-mining soils, at least in
the first few years, contain no organic compounds. As such,
preliminary reclamation measures were applied 3 years prior to
establishment. In spring of 2009, a legume mix (Medicago sativa
ssp. sativa, Medicago sativa ssp. media (M × varia) Martyn) was
planted at the site in an attempt to establish a suitable soil for the
cultivation of M×g.

The M×g field trial was then established in early May 2012,
and planted in 3 blocks, with each block divided into 4 m× 25 m
(5 m × 5 m) plots planted at a density of 1 plant m−2

(equivalent to 10,000 plants ha−1). The plots were randomized
within each block to ensure the results were not skewed by
environmental conditions (Supplementary Figure S1). One of
the following four fertilization treatments, consisting of organic
and supplementary mineral matter, were added to each plot prior
to planting only in year 1:

D0: Control plot with no fertilization and no sewage sludge
D1: Sewage sludge only
D2: Sewage sludge + a single dose of mineral fertilizer (0.5 kg
plot−1)
D3: Sewage sludge+ a doubled dose of mineral fertilizer (1 kg
plot−1)

In October 2011, sewage sludge, defined here as processed
human waste, sourced from a municipal sewage treatment plant
was applied to each experimental plot at a weight of 1 Mg; this
would equate to an addition of organic matter (O.M.) at 400 Mg
ha−1. Polish legislation states that on agricultural land, sewage
sludge is normally applied at a rate of 80–100 Mg ha−1. The lack
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of biologically active layer upon the mine spoil suggested that the
normal rates would not be sufficient. The soil was ploghed to a
depth of 30 cm and wet sewage sludge was applied by hand as an
even spread and mixed with the mine spoil using a tractor and
powered cultivator.

The sewage sludge met all guidelines laid out by the Polish
legislation in terms of mineral and organic xenobiotics and
in terms of sanitary and hygiene standards. The chemical
parameters of the sewage sludge were as follows: pH 7.92,
dry matter (D.M.) 19.97%, organic carbon (C org.) 336.2 g
kg D.M.−1, total nitrogen 43.36 g kg D.M.−1, C: N ratio of
8:1 and organic matter (O.M.) 600 g kg D.M.−1 consisting of
56% C org. Following the mixing of the sewage sludge into
the soil, the chemical composition of the soil was as follows:
pH 7.42, Corg 4.75 mg kg−1, Norg 0.91 mg kg−1, and a C:N
ratio of 5:1. The additional mineral fertilization was used to
test whether the addition of sewage sludge alone is sufficient
for the growth and development of M×g on such poor soil.
For the mineral fertilization, a mix of the Azofoska fertilizer
(Azofoska Granules, GRUPA INCO S.A., Poland) was used
with the following chemical composition: 13% nitrogen, 19%
phosphorus, 16% potassium, 0.18% copper, 0.045% zinc, 0.27%
manganese, and 0.09% boron. Fertilization was applied under
deep ploghing preceding the field trial.

Over the course of the 3-year period of the study, parameters
were evaluated annually. From the center of each plot, six
randomly selected plants were collected for analyses: biomass
yield (dry matter), plant height and tillering (stem density) were
assessed for each plant. The replication of each fertilization
mixture treatment gave total of 18 plants for each fertilization
treatment. Plant height was measured to the top ligule (excluding
the flag leaf) on the tallest stem for each plant; this is very
similar to canopy height in M × giganteus. For tillering
measurements, only stems above 10cm were counted and stems
were differentiated from a newly emerged bud by the presence
of a ligule leaf. Biomass was harvested during February to March
from three successive vegetated periods: 2012–2013, 2013–2014,
and 2014–2015.

Soil Analyses – Analytical Methods
Soil samples were collected by 30 cm corers with a 2 cm diameter.
For each plot, a total of five samples were collected; these were
then mixed to form one sample before analysis was conducted.
Dry mass was assessed in the organic materials (sewage sludge,
compost) and in the plant material after drying in a dryer

with hot air flow (at 70◦C) to constant weight. Total nitrogen
was determined after sample mineralization in concentrated
sulphuric acid in an open system by Kjeldahl’s (e.g., Bremner,
1960) method using automatic Kjeltec II Plus set (Tecator).
Organic carbon content was determined after the sample
mineralization in potassium dichromate by Tiurin’s method
(Mebius, 1960). Ash component contents in the organic materials
and plant samples were assessed after the sample mineralization
in a muffle furnace (at 450◦C for 5 h) and the ash dissolution in
nitric acid. Phosphorus content was determined by vanadium
and molybdenum method in Backman DU 640 spectrometer
at wavelength 436 nm. Potassium, sodium and calcium were
assessed by flame photometry (FES) and magnesium, chromium,
and the other heavy metals (only in the organic materials) were
determined by atomic absorption spectrometry (AAS) in PU
9100X Phillips apparatus (Ostrowska et al., 1991).

Statistical Analyses
The data were analyzed by various uni- and multivariate
statistical methods (Caliński and Kaczmarek, 1973; Morrison,
1976) in two stages. In stage one a two-factor (three years and
four treatments) analysis of variance (ANOVA) was used to test
the null hypotheses of no differences between years or between
treatments, and, the null hypothesis of no year and treatment
interaction.

In stage two, a multivariate analysis of variance was used
and a canonical analysis was performed to provide a graphical
presentation of treatments with regards to three morphological
traits (plant height, tillering and plant biomass yield). The
configuration of treatments in the space of the first two
canonical variables with the shortest dendrite connecting the
points representing those treatments was made. The differences
in plant morphology with regards to the differing treatment
methods between the first and second years, and, the second and
third years were also tested using Duncan’s multiple range test
(DMRT) (Gomez and Gomez, 1984). However, configurations
of treatments in the space of the first two canonical variables
(V1 and V2) were also performed with regards to increments in
the analyzed characteristics of yield for the first year (Y1) and
between successive years (Y2–Y1 and Y3–Y2) of the cultivation.

RESULTS

The M×g plants survived the first winter of 2012/2013 with
99% over wintering survival rate. Winter temperatures were not

TABLE 1 | Results of the two-way analysis of variance for structural traits of Miscanthus; plant height, tillering, and plant dry matter yield (∗significant at
P ≤ 0.05).

Source of variation Df (degrees of freedom) Mean square

Plant height Tillering Plant biomass yield

Doses (D) 3 8952.64∗ 311.92∗ 10.86∗

Year (Y) 2 13322.17∗ 6249.35∗ 678.17∗

Interaction D × Y 6 317.68 98.44∗ 3.28

Error 60 324.04 35.58 4.16
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low enough to seriously impact the survival rate; the November
to March average temperature at the site was –4◦C. Sufficient
snowfall provided an insulating layer that helped to protect the
vulnerable, first year plants from frost damage. Precipitation total
in the growing season (from the beginning of April to the end
of October) in the successive years (2012, 2013, and 2014) for
the town of Turek was 405, 435, and 460 mm, respectively. Mean
temperatures for each growing seasons were 15.4◦C, 15.0◦C, and
14.9◦C.

Results showed that a significant (P<0.05) variation in plant
traits occurred with regard to the fertilization method (D) as well
as the year of analyses (Y). In turn, the interaction between years
of analyses and doses of fertilization (Y × D) proved significant
only for plant tillering (Table 1).

The variation in plant traits and biomass yield for each year,
and, for each fertilization method are displayed in Figure 1.
Over the 3-year study period, the mean values (derived from
the three replications) of plant traits (plant height, tillering and
biomass yield) were generally significantly greater (P < 0.05)
for the fertilized plots (D1, D2, and D3) than the control plot
(D0). There are no significant differences between the individual
fertilization treatments (D1, D2 and D3) across the individual
years other than with regard to tillering. In year one, plots treated
with municipal sewage sludge and mineral fertilizer (D2 and D3)
yielded a greater number of tillers than those treated only with
organic fertilization. There was however, no significant difference
in tiller number between the doses (D2 and D3) of mineral
fertilizer. By year three, mean plant height in the fertilized plots
was 210.61 ± 9.14 cm compared to 179.33 cm in the control,
tillering was 46.16 ± 4.27 stems plant−1 compared to 31.33 and
biomass yield was 1.473 ± 0.28 kg plant−1 compared to 0.964 kg
plant−1 in the fertilized and control plots, respectively.

Since the analyses were conducted across the first 3 years
of plant growth and development, and covered the third year
where plants might be expected to approach their full yield
potential (Greef, 1996; El Bassam, 1997; Deuter and Abraham,
2000; Pude and Jeżowski, 2003; Jeżowski, 2008; Jeżowski et al.,
2011); increments of increase in the investigated traits were also
analyzed with regards to the fertilization levels.

Between the first and second year of cultivation (Y2–Y1),
the greatest increase in plants heights were evident in the plots
fertilized with only municipal sewage sludge (D1); the same
remains true for the second and third years. Between year two
and year three, all fertilized plots showed greater increases in
plant height than the control plants. There were no significant
differences in plant height relating to the method of fertilization
(D1, D2 and D3).

Between year one and year two, the tillering results show
that the plants in the control plot grew significantly more stems
than those in fertilized plots. The opposite was seen between
years two and three, whereby plants treated with fertilizer
added significantly more stems than those which had not been
treated (mean of 26.33 ± 4.58 stems plant−1 compared to
the control 14.33 stems plant−1). As is the case with plant
height, there was no significant difference in tillering between
fertilization techniques (D1, D2, and D3). Biomass yield increases
were significantly lower between all years in the control plots

FIGURE 1 | Plant trait variations over the 3-study period and for the
differing fertilization treatments (D0: control, D1: Sewage sludge only,
D2: Sewage sludge + single dose of mineral fertilizer, D3: Sewage
sludge + double dose of mineral fertilizer). Y1: Year 1, Y2: Year 2,
Y3: Year 3. (A) Plant Height, (B) Tillering, (C) Biomass Yield. The letters above
the data series indicated significance differences between the results. Error
bars represent standard error.

compared to the fertilized plots. Between years one and two
biomass yields were, on average 3.54 ± 0.44 kg plant−1 in
the fertilized plots compared to 2.08 kg plant−1 in the control
plots. These figures increased between year two and year
three; fertilized plants gained an average of 9.55 ± 044 kg
plant−1 compared to 6.27 kg plant−1 in the unfertilized control
plots. Again, no significant differences were evident in the
biomass yield between fertilization methods (D1, D2, and D3;
Table 2).
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Jeżowski et al. Miscanthus Growth on Degraded Soils

TABLE 2 | Increases in the mean values of plant traits related to different fertilizer doses (D0: control, D1: Sewage sludge only, D2: Sewage sludge +
single dose of mineral fertilizer, D3: Sewage sludge + double dose of mineral fertilizer) between the first and second (Y1–Y2) and second and third
(Y3–Y2) years of the experiment.

Method of fertilization Year Plant Trait

Plant height (cm) Tillering (stems number) Plant biomass yield (kg)

D0 Y2–Y1 3.33a 10.50b 2.08b

D1 9.35a 9.33a 3.03a

D2 5.00a 7.50a 3.79a

D3 2.62a 8.16a 3.80a

D0 Y3–Y2 37.17a 14.33b 6.27b

D1 47.98a 30.83a 9.88a

D2 38.34a 21.66a 9.04a

D3 41.49a 26.33a 9.73a

Superscripts denote significant differences between results (P < 0.05).

A more in-depth interpretation of the recorded results was
provided by the application of the analysis of canonical variables
V1 and V2. This facilitated a graphic presentation of the results
with regards to the effect of individual fertilization methods (D0,
D1, D2, and D3) on plant physiology (see Supplementary Data
Sheet). This analysis also made it possible to plot a dendrite for
the shortest linkages between these doses for the 3-year study
period; graphical representations of these results can be found
in the Supplementary Information presented with this study.
Results of this analysis largely agreed with the ANOVA results
previously presented (significant differences in the mean values
of morphological and yield traits existed only between control [no
fertilizer] and fertilized treatments, and, that there were generally
no significant differences between fertilization methods). The
only exception to this was observed for the increment of increase
in plant tillering between years one and two. The analysis
suggested that the application of fertilization treatment D1
(organic fertilization) gave the greatest increase in number of
stems in the earlier years when compared to D2 and D3 (organic
fertilization supplemented with mineral fertilization). This may
also indicate that when M×g was approaching its full yielding
potential on degraded soils (between years two and three),
organic fertilization applied at an adequately high dose is the
most effective treatment with regards to tillering. Supplementary
mineral fertilization in this later period may have had a lesser
effect due to the abundance of essential nutrients (N, P, K, C,
and Mg etc.) contained within the organic fertilizer. This implies
that additional mineral fertilization had only a slight effect on
variation in growth, development and yield (Figure 2).

Throughout the study period, soil analysis was conducted
to monitor the pH, organic carbon (C org), organic nitrogen
(N org) and nutrient content. The pH remained relatively stable
in the first 2 years, before decreasing in year three. Perhaps one
of the most notable changes was the increasing C org content
within the soil across all plots and fertilization doses. The results
show that on the control plots (D0), where no fertilization was
added, concentrations of C org increased significantly between
year one and year three. This indicates that the cultivation of
M×g naturally supplies carbon to land where organic matter
may otherwise be lacking. The concentration of macronutrients

within the soil all increased significantly in the fertilized plots,
but remained to most extent, at constant pre-experiment levels
in unfertilized plots. The most evident exception to this was the
levels of Fe; these significantly decreased between years one and
three (Figure 2).

DISCUSSION

This current study presents the results of a simple yield and trait
development trial investigating the impact of fertilizer treatment
on the performance of M×g cultivated on reclaimed brown coal
mining sites. Whilst many studies report the effect of fertilization
of M×g on growth, development and yield when cultivated on
soils classified as suitable quality for agricultural use (e.g., Greef,
1996; El Bassam, 1997; Munzer, 2000; Pude, 2000), few studies
consider the growth on extremely marginal soils. Several studies
(e.g., Pogrzeba et al., 2013; Nsanganwimana et al., 2016) assess
the cultivation and growth of various species of miscanthus
on heavy metal contaminated land, however, little attention is
given with regards to degraded (biologically inactive) mine soils,
or, plant growth and trait development. In Europe alone, it is
estimated that mine spoil and degraded soils cover thousands
of hectares (Brown et al., 2003; Augustsson et al., 2015). For
this reason, the study presented here may be considered, to a
certain degree, pioneering research as it opens new opportunities
for the cultivation of energy grasses on extremely marginal soils,
otherwise unsuitable for agricultural use (Communication from
the Commission to the European Parliament, 2014). If carried out
on a large scale, the growth of M×g on poor quality land could, in
part, satisfy the demands laid out by the European Commission
communication (OJ C 163 of 28 May 2014). Growing on such
land presents no implications to other arable agriculture and
could increase the proportion of perennial crops being utilized
within the energy sector. Beyond the production of biomass, the
long-term cultivation of M×g may also have an advantageous
effect on remediation of the degraded soils on which they
are grown, restoring their physico–chemical and biological
equilibrium. These plants, during both the growing season and
harvest, naturally condition the upper layers of degraded soil by

Frontiers in Plant Science | www.frontiersin.org 5 June 2017 | Volume 8 | Article 726

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00726 June 9, 2017 Time: 16:3 # 6
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FIGURE 2 | Soil pH and concentrations of macronutrients throughout
the 3-year study period. Y1: Year 1, Y2: Year 2, Y3: Year 3. (A) Soil pH.
(B) Organic carbon concentration, (C) Organic nitrogen concentration,
(D) Carbon to nitrogen ration, (E) Potassium concentration, (F) Magnesium
concentration, (G) Manganese concentration, (H) Phosphorus concentration,
(I) Zinc concentration, (J) Copper concentration, (K) Iron concentration. In all
cases, the dashed line represents soil conditions prior to the study. Error bars
represent standard error. Doses of fertilization defined as: D0: control, D1:
Sewage sludge only, D2: Sewage sludge + single dose of mineral fertilizer, D3:
Sewage sludge + double dose of mineral fertilizer.

supplying organic carbon through leaf drop, biomass residues
and root exudates. Additionally, they aid the cycling of many
other essential nutrients, e.g., N, P, K, Ca, Na, Mg, Fe, and Si
(e.g., El Bassam, 1997; Himken et al., 1997; Majtkowski, 1998;
Ercoli et al., 1999; Kahle et al., 2001; Kozak et al., 2006; Danalatos
et al., 2007; Kalembasa and Malinowska, 2007; Borzącka-Walker,
2008; Christian et al., 2008; Curley et al., 2009). The ability of
M×g to supply carbon to the soil is demonstrated within this
study; organic carbon levels significantly increased in the soil

following the cultivation of the plants even without fertilization.
The concentrations of most macronutrients remained relatively
stable in plots where no fertilizer was added, suggesting that
whilst the crop may aid in the cycling of nutrients, in most cases,
it does not significantly affect the concentrations.

The results indicate that crop performance on brown coal
mining sites was significantly enhanced by the application of
fertilizer. The best growth, development and yields of M×g over
a period of 3 years (from planting to reaching full yield by
plants in the third year) were achieved by a very high dose
of organic fertilization (approximately 400 Mg fresh matter
ha−1) contained, for example, in municipal sewage sludge.
Supplemental mineral fertilization in this, case showed no
significant effect. These analyses also showed that by the third
year of establishment, the plants yielded around 1.5 kg D.M.
plant−1 (∼15 Mg D.M. ha−1 at a density of 10,000 plants ha−1).
The results suggest that the nutrient content in the sewage sludge
alone was sufficient to fulfill the requirements of M×g. M×g
is highly efficient with regards to nitrogen use, and as such, is
typically unresponsive (in terms of harvestable yield at least) to
concentrations of mineralized N above 50 kg ha−1 (McCalmont
et al., 2017). There were no significant differences in yield ha−1

between the mineral fertilization doses (D1, D2, and D3). This
would suggest that demand for N had been satisfied by existing
mineral levels in the soil along with the nitrification of organic N
added in the sewage sludge.

Contempory studies (Hastings et al., unpublished) discuss the
economic viability of growing M×g. Current harvest prices in
the United Kingdom equate to ∼ €89 [exchange rate correct at
time of writing] Mg−1 for bales with <14% moisture content.
Based on this price, and the yields achieved within this study,
biomass from 1 ha of M×g grown on post mining land would
have a value of €1330. The cost typical of rhizome propagation in
the United Kingdom is €2364–2956 ha−1 (Terravesta, personal
communication), however, on marginal post mining soils this
cost will be higher due to the preliminary work needed to
establish a suitable organic soil. Harvesting costs also need to
be considered; Hastings et al. (unpublished) suggest these to
be €48.09 Mg−1 for a ∼13 ha field used within their study.
Commercial prices are considerably cheaper; ∼ €29.70 Mg−1

(Terravesta, personal communication). Using the yields (15 Mg
ha−1) of this study, this would equate to harvesting costs of
€436 - €721 ha−1 for the commercial and experimental estimates,
respectively. Assuming that harvest starts in year 3, and using
the more expensive experimental costing, after year 3 the overall
cost incurred (propagation cost [€2956] + harvest cost [€721] –
biomass value [€1330]) would be ∼ €2347 ha−1. After initial
planting there are no further establishment costs and the crop
requires few inputs. Thus, if the biomass value and harvest
costs remain constant, this figure decreases by €609 (biomass
value – harvesting costs) each year. Therefore, using the figures
provided, a plantation on reclaimed soil could be profitable after
the seventh year of establishment. However, due to the nature of
the land (unstable and undulating terrain), conventional forage
harvest methods may have to be adapted to cut the crop at a
greater height (15–20 cm rather than 10 cm). This would result
in a biomass yield decrease of ∼0.5 Mg ha−1. As such, it is
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more plausible to suggest that such a plantation would become
profitable after year 10. It should be stressed here, that whilst the
establishment of M×g on post mining land could be profitable,
its role in the reclamation of land is of great significance. This
study shows that following establishment, organic content in the
soil increases. Therefore, a long-term plantation (15 to 20 years)
could significantly contribute to the reclamation of extremely
degraded soils, on which other economically important plant
species maybe grown in the future (Ussiri and Lal, 2014; Lord,
2015). Although the process of reclamation by the growth of
M×g may take longer than other conventional methods, the costs
associated with the process maybe greatly reduced. Estimates
suggest remediation can range from €147,774–€472,876 ha−1 for
post mining waste (English Partnerships, 2008).

The results of this study indicate that M×g shows great
growth potential on land that is unsuitable for other agricultural
uses. However, there are a number of factors to be considered.
The dose of organic matter in the form of sewage sludge
was four times that of normal agricultural application, due to
the poor nature of the soil. Given the yields of the control
plots (∼0.9 kg plant−1 which equates to ∼9 Mg ha−1), it is
possible that viable yields could be achieved with much lower
doses of organic fertilizer. Increasing plant density may also
increase the yields of biomass per hectare. These factors are
potential avenues for future work. Furthermore, the quality of
the biomass produced by plants cultivated on degraded land
would need to be assessed prior to commercial and economic
use. If the harvested biomass was to contain elevated levels of
heavy metals, it would be unsuitable for combustion as this
would result in the slagging and corrosion of biomass boilers
(Obernberger, 1998). However, should this be the case, there are
other possible feedstock applications, such as anaerobic digestion
(a process where the digestate encompassing the contaminants

can be contained), that could be considered (e.g., Kiesel and
Lewandowski, 2015).

AUTHOR CONTRIBUTIONS

MM and SJ contributed equally to this work as the first authors
(60% contributions in experimental design, data collections, and
manuscript writing). MM work leader. JC-W, SB, and SO –
5% each contribution in data analyses and manuscript writing.
ZK, WO, and AM – 5% each contribution in data analyses,
experimental design, data collections, and manuscript writing.
JM – 10% contribution in data analyses and manuscript writing.

ACKNOWLEDGMENTS

This work was supported by Institute of Plant Genetics,
Polish Academy of Sciences, Poznan and the Biotechnology
and Biological Sciences Research Council strategic programme
grant on Energy Grasses and Biorefining [grant number
BBS/E/W/10963A01]. MM holds executive position at the time
of running this experiment and has financial interest in Energene.
SB holds a technical position in Terravesta Ltd.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2017.00726/
full#supplementary-material

FIGURE S1 | The randomised experimental field trial design.

REFERENCES
Augustsson, A. L. M., Uddh-Söderberga, T. E., Hogmalmb, K. J., and Filipssona,

M. E. M. (2015). Metal uptake by homegrown vegetables – The relative
importance in human health risk assessments at contaminated sites. Environ.
Res 138, 181–190. doi: 10.1016/j.envres.2015.01.020
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Majtkowski, W. (1998). Przydatnośæ wybranych gatunków traw typu C4 do upraw
alternatywnych w Polsce [Suitability of selected C4 grasses for alternative
cultures in Poland]. Hod. Ros. Nas. 2, 41–48.

McCalmont, J. P., Hastings, A., McNamara, N. P., Richter, G. M., Robson, P.,
Donnison, I. S., et al. (2017). Environmental costs and benefits of growing
Miscanthus for bioenergy in the UK. GCB Bioenergy. 9, 489–507. doi: 10.1111/
gcbb.12294

Mebius, L. (1960). A rapid method for the determination of organic carbon in soil.
Anal. Chim. Acta 22, 120–124. doi: 10.1016/S0003-2670(00)88254-9

Morrison, D. F. (1976). Multivariate Statistical Methods, 2nd Edn. Tokyo: McGraw-
Hill, 1–56.

Munzer, W. (2000). Rhizompflanzen, Alternative? Beitrage zu
Agrarwissenschaften. Unvarstat Bonn 19, 15–20.

Nsanganwimana, F., Waterlot, C., Louvel, B., Pourrut, B., and Douay, F. (2016).
Metal, nutrient and biomass accumulation during the growing cycle of
Miscanthus established on metal-contaminated soils. J. Plant Nutr. Soil Sci. 179,
257–269. doi: 10.1002/jpln.201500163

Obernberger, I. (1998). Decentralized biomass combustion: state of the art and
future development. Biomass Bioenergy 14, 33–56. doi: 10.1016/S0961-9534(97)
00034-2
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