8,655 research outputs found

    Neutrix Calculus and Finite Quantum Field Theory

    Get PDF
    In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like QED are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT,obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework.Comment: 10 pages; LaTeX; version to appear in J. Phys. A: Math. Gen. as a Letter to the Edito

    Single-electron tunneling in InP nanowires

    Get PDF
    We report on the fabrication and electrical characterization of field-effect devices based on wire-shaped InP crystals grown from Au catalyst particles by a vapor-liquid-solid process. Our InP wires are n-type doped with diameters in the 40-55 nm range and lengths of several microns. After being deposited on an oxidized Si substrate, wires are contacted individually via e-beam fabricated Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor temperature dependence. The distance between the electrodes varies between 0.2 and 2 micron. The electron density in the wires is changed with a back gate. Low-temperature transport measurements show Coulomb-blockade behavior with single-electron charging energies of ~1 meV. We also demonstrate energy quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure

    Prognostic value of bcl-2 expression in invasive breast cancer.

    Get PDF
    Expression of the bcl-2 proto-oncogene was studied immunohistochemically in 251 invasive ductal breast carcinomas (median follow-up time 91 months, range 24-186 months) and the results were correlated with clinicopathological data and prognostic variables. Sixty-three (25%) tumours were scored bcl-2 negative and 188 (75%) tumours were bcl-2 positive. No relationship could be observed between bcl-2 status and tumour grade, pTNM staging or menopausal status. A strong positive relationship was demonstrated between bcl-2 immunoreactivity and oestrogen receptor status (P < 0.001) and progesterone receptor status (P < 0.001). No prognostic value was demonstrated for bcl-2 expression on disease-free survival and overall survival in axillary node-negative breast cancer patients. However, in axillary node-positive breast cancer patients multivariate analysis demonstrated absence of bcl-2 expression to be independently related to shortened disease-free survival (P = 0.003) and shortened overall survival (P < 0.001). Our results suggest a potential important role for bcl-2 expression as a modulator of response to adjuvant therapy in breast cancer

    Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    Full text link
    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.Comment: 8 pages, 1 figur

    Inleiding

    Get PDF

    Bone metastases in the era of targeted treatments : insights from molecular biology

    Get PDF
    Bone metastases remain a common feature of advanced cancers and are associated with significant morbidity and mortality. Recent research has identified promising novel treatment targets to improve current treatment strategies for bone metastatic disease. This review summarizes the well-known and recently discovered molecular biology pathways in bone that govern normal physiological remodeling or drive the pathophysiological changes observed when bone metastases are present. In the rapidly changing world of targeted cancer treatments, it is important to recognize the specific treatment effects induced in bone by these agents and the potential impact on common imaging strategies. The osteoclastic targets (bisphosphonates, LGR4, RANKL, mTOR, MET-VEGFR, cathepsin K, Src, Dock 5) and the osteoblastic targets (Wnt and endothelin) are discussed, and the emerging field of osteo-immunity is introduced as potential future therapeutic target. Finally, a summary is provided of available trial data for agents that target these pathways and that have been assessed in patients. The ultimate goal of research into novel pathways and targets involved in the tumor-bone microenvironment is to tackle one of the great remaining unmet needs in oncology, that is finding a cure for bone metastatic disease
    • …
    corecore