2,373 research outputs found

    Vibrations of closed-shell Lennard-Jones icosahedral and cuboctahedral clusters and their effect on the cluster ground state energy

    Full text link
    Vibrational spectra of closed shell Lennard-Jones icosahedral and cuboctahedral clusters are calculated for shell numbers between 2 and 9. Evolution of the vibrational density of states with the cluster shell number is examined and differences between icosahedral and cuboctahedral clusters described. This enabled a quantum calculation of quantum ground state energies of the clusters in the quasiharmonic approximation and a comparison of the differences between the two types of clusters. It is demonstrated that in the quantum treatment, the closed shell icosahedral clusters binding energies differ from those of cuboctahedral clusters more than is the case in classical treatment

    Entropic effects on the Size Evolution of Cluster Structure

    Full text link
    We show that the vibrational entropy can play a crucial role in determining the equilibrium structure of clusters by constructing structural phase diagrams showing how the structure depends upon both size and temperature. These phase diagrams are obtained for example rare gas and metal clusters.Comment: 5 pages, 3 figure

    Lack of conformity to new local dietary preferences in migrating captive chimpanzees

    Get PDF
    G.L.V., S.D. and A.W. were funded by the John Templeton Foundation (Grant ID: 40128 to A.W. and K. Laland). Support for the chimpanzee colony came from NIHU42-OD-011197.Conformity to the behavioural preferences of others can have powerful effects on intra-group behavioural homogeneity in humans, but evidence in animals remains minimal. In this study, we took advantage of circumstances in which individuals or pairs of captive chimpanzees, Pan troglodytes, were “migrated” between groups, to investigate whether immigrants would conform to a new dietary population preference experienced in the group they entered, an effect suggested by recent fieldwork. Such ‘migratory-minority’ chimpanzees were trained to avoid one of two differently-coloured foods made unpalatable, before ‘migrating’ to, and then observing, a ‘local-majority’ group consume a different food colour. Both migratory-minority and local-majority chimpanzees displayed social learning, spending significantly more time consuming the previously unpalatable, but instead now edible, food, than did control chimpanzees who did not see immigrants eat this food, nor emigrate themselves. However, following the migration of migratory-minority chimpanzees, these control individuals and the local-majority chimpanzees tended to rely primarily upon personal information, consuming first the food they had earlier learned was palatable before sampling the alternative. Thus, chimpanzees did not engage in conformity in the context we tested; instead seeing others eat a previously unpalatable food led to socially learned and adaptive re-exploration of this now-safe option in both minority and majority participants.PostprintPeer reviewe

    Research Chimpanzees May Get a Break

    Get PDF
    A recent report by the Institute of Medicine leaves few urgent reasons standing for the continued use of chimpanzees in biomedical research. It is high time to think about their retirement, Frans de Waal argues, without neglecting prospects for non-invasive research on behavior, cognition, and genetics

    Efficient, D-glucose insensitive, growth on D-xylose by an evolutionary engineered Saccharomyces cerevisiae strain

    Get PDF
    Optimizing D-xylose consumption in Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. An evolutionary engineering approach was used to elevate D-xylose consumption in a xylose-fermenting S. cerevisiae strain carrying the D-xylose-specific N367I mutation in the endogenous chimeric Hxt36 hexose transporter. This strain carries a quadruple hexokinase deletion that prevents glucose utilization, and allows for selection of improved growth rates on D-xylose in the presence of high D-glucose concentrations. Evolutionary engineering resulted in D-glucose-insensitive growth and consumption of D-xylose which could be attributed to glucose insensitive D-xylose uptake via a novel chimeric Hxt37 N367I transporter that emerged from a fusion of the HXT36 and HXT7 genes, and a down regulation of a set of Hxt transporters that mediate glucose sensitive xylose transport. RNA sequencing revealed the down-regulation of HXT1 and HXT2 which, together with the deletion of HXT7, resulted in a 21% reduction of the expression of all plasma membrane transporters genes. Morphological analysis showed an increased cell size and corresponding increased cell surface area of the evolved strain, which could be attributed to genome duplication. Mixed strain fermentation of the D-xylose-consuming strain DS71054-evo6 with the D-glucose consuming CEN.PK113-7D strain resulted in decreased residual sugar concentrations and improved ethanol production yields compared to a strain which sequentially consumes D-glucose and D-xylose

    Out of the darkness: A History of Huntington's Disease in Australia

    Get PDF
    Huntington’s disease (HD) is a genetic neurological condition which has a profound influence on the families it affects. The symptoms of the disease are challenging – in addition, social forces strongly influence the way the disease is experienced. It has been a deeply stigmatised condition, and its presence was often kept secret. In this dissertation, I have explored both social and medical aspects of the history of HD, primarily in Australia, building on the work of two scholars, Peter Harper (UK) and Alice Wexler (US). By tracing the histories of HD families, I discovered that HD has been part of the fabric of life in Australia since the convict era, and that some families with the disease were well-respected in their communities, in contrast to narratives which have presented the stigma as inevitable. Wexler has previously shown that in the US, the degree of stigma faced by HD families has varied over time, and my research found this to be also true of the disease in Australia. The earliest descriptions of the disease in the US were mostly made by physicians familiar with HD families. My research revealed a similar story - two physicians who published on HD both grew up in an area of Tasmania with relatively high rates of the disease. The impact of eugenic thinking in the stigmatization of HD in the US, Germany and the UK was noted more than 20 years ago, though its impact in other countries has remained unexplored. Eugenics as a formal movement was not successful in Australia, however eugenic ideas formed part of the social discourse. I show through medical journal articles, items in the popular press and educational organisations how those with hereditary diseases were labeled as “unfit”, promoting stigma which contributed to it being hidden. Finally I describe how the disease began to emerge from “the closet” in the early 1970s, with families and researchers forging a new collaboration to search for treatments, support families and reduce stigma

    3-methylhistidine as an Indicator for Protein Beakdown: An Experimental Model in Male Capra hircu

    Get PDF
    The role of the amino acid 3-methylhistidine as an indicator of protein breakdown and weight loss is  often suggested. Despite existing information for other animal species, little is known about the actual  levels of 3-methyhistidine in the serum of less studied domestic species such as the goat. We have  evaluated the 3-methyhistidine serum concentrations in young Boer goat bucks subjected to two distinct  feeding regimens: winter-grass hay with or without supplementation. Non-supplemented animals had a  negative nitrogen balance and experienced weight loss throughout the experiment and significantly higher  concentrations of 3-methyhistidine than supplemented animals that had a slight increase in live weight.  This amino acid can be considered a valid indicator of protein breakdown and weight decrease in male  goats. Serum 3-methylhistidine concentrations in adequately fed male goats were similar throughout the  assay (20-40 Όmol/l) whereas in weight-losing animals, concentrations of up to 170Όmol/l can be expected.

    Nuclear medicine imaging of multiple myeloma, particularly in the relapsed setting

    Get PDF
    Multiple myeloma (MM) is characterized by a monoclonal plasma cell population in the bone marrow. Lytic lesions occur in up to 90 % of patients. For many years, whole-body X-ray (WBX) was the method of choice for detecting skeleton abnormalities. However, the value of WBX in relapsing disease is limited because lesions persist post-treatment, which restricts the capacity to distinguish between old, inactive skeletal lesions and new, active ones. Therefore, alternative techniques are necessary to visualize disease activity. Modern imaging techniques such as magnetic resonance imaging, positron emission tomography and computed tomography offer superior detection of myeloma bone disease and extramedullary manifestations. In particular, the properties of nuclear imaging enable the identification of disease activity by directly targeting the specific cellular properties of malignant plasma cells. In this review, an overview is provided of the effectiveness of radiopharmaceuticals that target metabolism, surface receptors and angiogenesis. The available literature data for commonly used nuclear imaging tracers, the promising first results of new tracers, and our pilot work indicate that a number of these radiopharmaceutical applications can be used effectively for staging and response monitoring of relapsing MM patients. Moreover, some tracers can potentially be used for radio immunotherapy

    Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae

    Get PDF
    Background: Engineering of the yeast Saccharomyces cerevisiae for improved utilization of pentose sugars is vital for cost-efficient cellulosic bioethanol production. Although endogenous hexose transporters (Hxt) can be engineered into specific pentose transporters, they remain subjected to glucose-regulated protein degradation. Therefore, in the absence of glucose or when the glucose is exhausted from the medium, some Hxt proteins with high xylose transport capacity are rapidly degraded and removed from the cytoplasmic membrane. Thus, turnover of such Hxt proteins may lead to poor growth on solely xylose. Results: The low affinity hexose transporters Hxt1, Hxt36 (Hxt3 variant), and Hxt5 are subjected to catabolite degradation as evidenced by a loss of GFP fused hexose transporters from the membrane upon glucose depletion. Catabolite degradation occurs through ubiquitination, which is a major signaling pathway for turnover. Therefore, N-terminal lysine residues of the aforementioned Hxt proteins predicted to be the target of ubiquitination, were replaced for arginine residues. The mutagenesis resulted in improved membrane localization when cells were grown on solely xylose concomitantly with markedly stimulated growth on xylose. The mutagenesis also improved the late stages of sugar fermentation when cells are grown on both glucose and xylose. Conclusions: Substitution of N-terminal lysine residues in the endogenous hexose transporters Hxt1 and Hxt36 that are subjected to catabolite degradation results in improved retention at the cytoplasmic membrane in the absence of glucose and causes improved xylose fermentation upon the depletion of glucose and when cells are grown in D-xylose alone

    In vitro drug sensitivity of normal peripheral blood lymphocytes and childhood leukaemic cells from bone marrow and peripheral blood.

    Get PDF
    In vitro drug sensitivity of leukaemic cells might be influenced by the contamination of such a sample with non-malignant cells and the sample source. To study this, sensitivity of normal peripheral blood (PB) lymphocytes to a number of cytostatic drugs was assessed with the MTT assay. We compared this sensitivity with the drug sensitivity of leukaemic cells of 38 children with acute lymphoblastic leukaemia. We also studied a possible differential sensitivity of leukaemic cells from bone marrow (BM) and PB. The following drugs were used: Prednisolone, dexamethasone, 6-mercaptopurine, 6-thioguanine, cytosine arabinoside, vincristine, vindesine, daunorubicin, doxorubicin, mafosfamide (Maf), 4-hydroperoxy-ifosfamide, teniposide, mitoxantrone, L-asparaginase, methotrexate and mustine. Normal PB lymphocytes were significantly more resistant to all drugs tested, except to Maf. Leukaemic BM and PB cells from 38 patients (unpaired samples) showed no significant differences in sensitivity to any of the drugs. Moreover, in 11 of 12 children with acute leukaemia of whom we investigated simultaneously obtained BM and PB (paired samples), their leukaemic BM and PB cells showed comparable drug sensitivity profiles. In one patient the BM cells were more sensitive to most drugs than those from the PB, but the actual differences in sensitivity were small. We conclude that the contamination of a leukaemic sample with normal PB lymphocytes will influence the results of the MTT assay. The source of the leukaemic sample, BM or PB, does not significantly influence the assay results
    • 

    corecore