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ABSTRACT 

Optimizing D-xylose consumption in Saccharomyces cerevisiae is essential for cost-efficient 

cellulosic bioethanol production. An evolutionary engineering approach was used to elevate D-

xylose consumption in a xylose-fermenting S. cerevisiae strain carrying the D-xylose-specific 

N367I mutation in the endogenous chimeric Hxt36 hexose transporter. This strain carries a 

quadruple hexokinase deletion that prevents glucose utilization, and allows for selection of 
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improved growth rates on D-xylose in the presence of high D-glucose concentrations. 

Evolutionary engineering resulted in D-glucose-insensitive growth and consumption of D-xylose 

which could be attributed to glucose insensitive D-xylose uptake via a novel chimeric Hxt37 

N367I transporter that emerged from a fusion of the HXT36 and HXT7 genes, and a down 

regulation of a set of Hxt transporters that mediate glucose sensitive xylose transport. RNA 

sequencing revealed the down-regulation of HXT1 and HXT2 which, together with the deletion 

of HXT7, resulted in a 21% reduction of the expression of all plasma membrane transporters 

genes. Morphological analysis showed an increased cell size and corresponding increased cell 

surface area of the evolved strain, which could be attributed to genome duplication. Mixed 

strain fermentation of the D-xylose-consuming strain DS71054-evo6 with the D-glucose 

consuming CEN.PK113-7D strain resulted in decreased residual sugar concentrations and 

improved ethanol production yields compared to a strain which sequentially consumes D-

glucose and D-xylose. 

 

Keywords: Sugar transport, D-xylose transporter, bioethanol, co-fermentation, yeast 

 

INTRODUCTION 

Bioethanol is a promising candidate as an alternative source of energy in an era of increasing 

fossil fuel deficit. Bioethanol is mostly used as blending agent with gasoline to cut down carbon 

monoxide and other smog-causing emissions. Traditional carbohydrate rich biomass from e.g. 
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corn or wheat, can be fermented to make bioethanol. However this raises a separate conflict, 

the conflict between food and fuel as they share the same origin (Solomon 2010). This has 

stimulated research for alternative methods of producing bioethanol e.g. via the usage of 

lignocellulosic biomass to produce bioethanol. Lignocellulosic plant biomass, as a by-product of 

agriculture and forestry, contains a considerable amount of D-xylose along with D-glucose, in a 

typical mass ratio of 1:2 (Carroll and Somerville 2009; Gírio et al. 2010). Saccharomyces 

cerevisiae can be used to make bioethanol from lignocellulosic plant biomass, however, only 

upon the expression of a xylose reductase and xylitol dehydrogenase (Jeffries and Jin 2004; 

Hahn-Hagerdal et al. 2007; Bera et al. 2011; Young et al. 2011) or a xylose isomerase (Kuyper et 

al. 2004; Van Maris et al. 2007). In this way, D-xylose consumption can be achieved. Xylose 

isomerase allows the interconversion between D-xylose and D-xylulose, the latter of which can 

be phosphorylated by the xylulose kinase Xks1, which has been overexpressed in engineered 

strains (Van Maris et al. 2007; Peng et al. 2011; Zha et al. 2014). The resulting D-xylulose-5-

phosphate enters the pentose phosphate pathway (PPP) and, via glyceraldehyde-3-phosphate 

and fructose-6-phosphate, D-xylose catabolism is connected to glycolysis and subsequent 

ethanol fermentation. 

Although various mutations like e.g. the deletion of GRE3 (Traff et al. 2001; Shao et al. 

2009; Wisselink et al. 2009) have improved the ethanol yield of D-xylose consumption, slow D-

xylose consumption rates, especially in the presence of glucose, lead later on in fermentation to 

incomplete conversion of available xylose in the feedstock, thereby resulting in economically 

inefficient fermentations. Co-consumption of D-xylose in the D-glucose fermentation phase can 

shorten fermentation times and aid in the complete fermentation of xylose in the feedstock. In 
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an industrial setting, it is preferred that both sugars are fermented simultaneously and at high 

rates (von Sivers et al. 1994) to generate an economically feasible and robust process. A major 

hurdle to obtain co-consumption of D-glucose and D-xylose, is the competitive inhibition of D-

glucose on D-xylose transport into the cell (Hamacher et al. 2002; Sedlak and Ho 2004; 

Saloheimo et al. 2007; Reider Apel et al. 2016). Due to these transport issues, xylose-fermenting 

S. cerevisiae strains first consume D-glucose, before D-xylose is metabolized (Hamacher et al. 

2002). The preferred D-glucose consumption of S. cerevisiae is the direct result of the sugar 

specificities of the hexose transporters (Hxt) (Reifenberger, Boles and Ciriacy 1997; Hamacher et 

al. 2002). The hexose transporters show the highest specificity for D-glucose and their affinity 

for this sugar is, on average, a 100-fold higher compared to D-xylose (Kotter and Ciriacy 1993; 

Hamacher et al. 2002). This prevents efficient D-xylose transport in the presence of high(er) 

concentrations of D-glucose (Young et al. 2012). Various approaches have been used to improve 

D-xylose transport including the introduction of specific D-xylose transporters derived from 

other organisms, but, in general, the D-xylose transport rates (Vmax) are insufficient to allow for 

maximal growth and rapid conversion rates (Saloheimo et al. 2007; Du, Li and Zhao 2010; 

Runquist, Hahn-Hagerdal and Radstrom 2010; Young et al. 2011; Wang et al. 2015). In recent 

studies D-xylose transport, in the presence of D-glucose, has improved dramatically based on 

the mutagenesis of endogenous Hxt transporters. This specifically concerns a conserved 

asparagine (at position 366, 367, 370 and 376, in Hxt11 (Shin et al. 2015), Hxt36 (Nijland et al. 

2014), Hxt7 (Farwick et al. 2014) and Gal2 (Farwick et al. 2014), respectively) which, when 

mutated, results in a reduced D-glucose affinity with little impact or even an improved affinity 

for D-xylose. D-xylose, unlike D-glucose, lacks the CH2OH group at the C5 position, and 
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therefore still is able to bind. In a previous study (Nijland et al. 2014) evolutionary engineering, 

of a D-glucose metabolism-deficient strain (lacking all four hexokinases), was conducted in 

which the yeast strain was selected for improved growth on D-xylose in the presence of high 

and inhibitory concentrations of D-glucose. In the evolved strain, D-xylose transport was 

desensitized for D-glucose inhibition because of a mutation in Hxt36 of the asparagine 367 into 

an isoleucine or alanine. Although the required specificity gain was achieved, the maximal 

transport rate (Vmax) for D-xylose was decreased compared to the parental strain. Therefore, the 

evolved hexokinase deletion strain (DS71054-evoB) still showed a decreased growth rate on 

mineral medium containing 1% D-xylose and 10% D-glucose as compared to 1% D-xylose only 

(Nijland et al. 2014). 

Here, we have employed further evolutionary engineering with the goal to obtain a 

strain that exhibits maximal growth rates on D-xylose in the presence of D-glucose. This resulted 

in a set of new evolved strains that show the desired phenotype. Upon co-fermentation of the 

D-xylose “specialist” with a D-glucose-fermenting strain co-consumption, an improved ethanol 

yield was achieved. 

 

MATERIALS AND METHODS 

Yeast stains, media and culture conditions 

Xylose-fermenting S. cerevisiae strains used in this study were provided by DSM Bio-based 

Products & Services and described elsewhere (Supplemental table 1). They are made available 
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for academic research under a Material Transfer Agreement (contact: johan.doesum-

van@dsm.com). Aerobic turbidostat cultures of S. cerevisiae for the evolutionary engineering 

were grown in mineral medium (MM) supplemented with vitamin solution and trace elements 

(Luttik et al. 2000) in a 500 ml working-volume laboratory fermenter at a temperature of 30˚C 

and pH 4.5 (Applikon, Schiedam, the Netherlands). The dissolved oxygen (DO) set point was 

20%, stirring was performed at 400 rpm and the OD600 was kept between 2 – 3 via CO2 off-gas 

measurements. Aerobic shake flask experiments were done at 200 rpm in mineral medium 

supplemented with various concentrations of D-xylose and/or D-glucose. In the fermentation 

experiments (on 7% D-glucose and 3% D xylose or solely 7% D-glucose) a starting OD600 of 2.0 

was used. Cell growth was monitored by optical density (OD) at 600 nm using an UV-visible 

spectrophotometer (Novaspec PLUS). 

 

Analytical methods 

High performance liquid chromatography (Shimadzu, Kyoto, Japan) was performed using an 

Aminex HPX-87H column at 65°C (Bio-RAD) and a refractive index detector (Shimadzu, Kyoto, 

Japan) was used to measure the concentrations of D-glucose, D-xylose, acetic acid and ethanol. 

The mobile phase was 0.005 N H2SO4 at a flow rate of 0.55 ml/min.  
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Transport Assays  

To determine the kinetic parameters of sugar transport, cells were grown for 16 hours in shake 

flasks in MM containing 2% D-xylose or 2% D-glucose and standard uptake procedure was 

followed as shown before (Nijland et al. 2014). Uptakes were performed with [14C] D-xylose and 

[14C] D-glucose (ARC, USA) at 50 and 500 mmol l-1, respectively, with various inhibiting sugar 

concentrations. The uptakes with [14C] D-xylose and [14C] D-glucose were performed for 60 and 

10 seconds, respectively, within their linear range of uptake. 

 

Cell volume and surface area determination 

DS71054-evo6 and DS71054 were aerobically cultivated for 16 hours in minimal medium with 

2% D-xylose. During the mid-exponential phase, 200 μL of each culture was harvested and 

centrifuged at 3000× g for 3 minutes. The supernatant was discarded and the cell pellet was 

resuspended in 20 μL minimal medium containing 2% D-xylose.  

An aliquot of 2 μL of each resuspension was dropped on a microscope cover glass slide (22 × 40 

mm), and overlaid with an agarose pad (5 × 5 mm). An amount of 0.2 gram of agarose was 

dissolved in 20 mL minimal medium containing 2% D-xylose by slowly heating. Molten agarose 

solution was solidified in a petri dish for 20 minutes in room temperature. A 5 × 5 mm agarose 

pad was excised with a razor blade. Bright field pictures were captured using a microscope 

(Nikon Ti) with the 100× objective and immersion oil. Cells in all pictures were segmented by a 
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plug-in BudJ v4.3 in the software ImageJ 1.48v. This plug-in draws an ellipse that best fits to 

each cell, returning the value of major axis (R) and minor axis (r). With these two parameters, 

the cell volume, surface area and surface area to volume ratio of individual cell were calculated 

with the following equations: 

Cell volume:   
 

 
       ;                      Eq.(1) 

Surface area:         (   
      

 
)                           Eq.(2) 

where   √  
  

  
 ;                              Eq.(3) 

For cell size estimation, around 100 cells were chosen for each biological replicate. To minimize 

bias, all mother and daughter cells within a field of view were selected. The ratio between 

surface area and volume was determined for each individual cell. 

 

Ploidy analysis using flow cytometry 

DS71054-evo6 and DS71054 were aerobically cultivated for 16 hours in minimal medium with 

2% D-xylose. The diploid strain of CEN.PK113-7D was cultivated, as control, in the same medium 

complemented with 2% D-glucose. The cells were subsequently harvested, fixated, treated with 

RNAse and Pepsin and stained with propidium iodide using the protocol of Haase et.al. (Haase 

and Lew 1997). The Accuri C6 flow cytometer (BD Biosciences, CA, USA) was used in which 20 μL 

was injected with a FSC value > 80.000 and using the FL2 detector (585BP). 
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RNA extraction and cDNA synthesis 

Total RNA was isolated from S. cerevisiae cells by a glass-bead disruption Trizol extraction 

procedure and performed as described by manufacturer (Life Technologies, Bleiswijk, The 

Netherlands). Yeast pellets from 2 ml of exponential phase cell culture (OD600 of ~ 4) were mixed 

with 0.2 ml of glass beads (diameter 0.45 mm) and 900 μl of Trizol with 125 μl chloroform, and 

disrupted in a Fastprep FP120 (Thermo Savant) for 45 seconds at speed 6. The extracted total 

RNA (500 ng) was used to synthesize cDNA using the iScript cDNA synthesis Kit (Bio-rad, CA, 

USA).  

 

RNAseq and analysis 

Total RNA of DS71054 and DS71054-evo6, grown in MM containing 6% D-glucose and 3% D-

xylose, was isolated in duplicates after 7 hours. The RNA library was prepared for sequencing 

using the BGISEQ (PE100) normal DNA library construction yielding 1.6 Gb of cleaned data (BGI, 

Copenhagen, Denmark). The FastQ files were run through a BowTie2-TopHat-SamTools pipeline 

and the resulting BAM files were analysed using SeqMonk V0.27.0. The Cen.PK113-7D strain was 

used as a reference genome. All genes were quantified in CPM (count per million) with a cut-off 

of 20 and run in an intensity difference statistical test in which a statistical difference of below 

0.05 was used (p<0.05).  
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Genome sequencing and analysis 

Genomic DNA of DS71054, DS71054-evoB, DS71054-evo4 and DS71054-evo6 was isolated using 

the YeaStar TM Genomic DNA Kit (Zymo Research, Irvine, USA) and was sent to Eurofins 

Genomics (Ebersberg, Germany) for genomic library preparation and paired end Illumina 

sequencing at a read length of 2 x 150 bp. For DS71054, DS71054-evoB, DS71054-evo4 and 

DS71054-evo6 on average 11 million reads were analysed with a fragment size of 150 bp of 

which approximately 70% could be aligned to Cen.PK113-7D which was used as reference 

genome. The Breseq sequencing pipeline was used to detect mutations, indels and new 

junctions (Deatherage and Barrick 2014).  

 

RESULTS 

Evolutionary engineering 

A quadruple hexokinase deletion mutant DS71054-evoB strain was previously evolved using an 

evolutionary engineering approach to select for growth on D-xylose in the presence of gradually 

increasing D-glucose concentrations (Nijland et al. 2014). This resulted in D-glucose-tolerant 

growth on D-xylose. This phenotype could be assigned to a mutation at position N367 in the 

endogenous chimeric Hxt36 transporter causing a defect in D-glucose transport while still 

allowing uptake of D-xylose. In this study, this strain was used as starting point for a new 

evolutionary engineering approach aiming to develop a strain that grows nearly as well on D-
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xylose in the absence and presence of high D-glucose concentrations. Herein, cells were grown 

aerobically in a turbidostat on 1% D-xylose in the presence of 10% D-glucose. In this set-up the 

aerobic growth rate equals the dilution rate which on D-glucose ranges between 0.40 h-1 (Van 

Hoek, Van Dijken and Pronk 1998) and 0.49 h-1 (Hanscho et al. 2012) depending on medium 

composition and strain background. The growth rate on D-xylose is lower as compared to D-

glucose (reviewed by Moysés et al. 2016) while the original hexokinase deletion strain DS71054 

shows hardly any growth on 1% D-xylose in the presence of 10% D-glucose (Nijland et al. 2014). 

At the start of the evolutionary engineering of DS71054-evoB, the dilution rate was set at 0.14 

h-1, but increased gradually to 0.33 h-1 within a period of three months (Supplemental Figure 1). 

Throughout this process, samples were taken and re-streaked on mineral medium plates 

containing 1% D-xylose and 10% D-glucose. Single colony isolates were obtained after 31, 52, 68 

and 85 days and named DS71054-evo3, DS71054-evo4, DS71054-evo5 and DS71054-evo6, 

respectively. The improved D-xylose growth rates of these strains in the presence of D-glucose 

were confirmed in shake flasks wherein DS71054 was unable to growth while the evolved 

strains showed gradually increased growth rates depending on the stage of the evolutionary 

engineering (Figure 1). DS71054-evo5, however, showed very inconsistent growth rates in MM 

containing 1% D-xylose and 10% D-glucose or on 1% D-xylose alone and was not used for further 

analysis. The other three evolved strains (DS71054-evo3, DS71054-evo4 and DS71054-evo6) 

showed identical growth rates on MM containing only 1% D-xylose (data not shown). The 

improved growth rates of DS71054-evo6 on 1% D-xylose in the presence of 10% D-glucose 

almost equaled the growth rates on 1% D-xylose solely (Figure 1, inset). DS71054-evo6 showed 

a tendency to flocculate especially on MM containing D-glucose. Dry-weight (DW) analysis 
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showed equal OD600/mgDW ratios for the DS71054 compared to DS71054-evo6 (data not 

shown) to confirm that in further experiments the normalization based on OD600 was not 

affected. 

 

Improved D-xylose uptake in evolutionary evolved strains 

D-xylose uptake experiments were performed to investigate if the improved growth rates of the 

evolved DS71054 strains could be attributed to an elevated rate of D-xylose uptake and/or 

improved insensitivity of uptake towards D-glucose. D-xylose uptake rates, as measured at 50 

mM concentration, were almost identical for DS71054, DS71054-evoB, DS71054-evo3 and 

DS71054-evo6 (15.6 ± 0.8, 15.4 ± 1.1, 13.6 ± 0.2 and 16.0 ± 1.3 nmol/mgDW.min, respectively) 

(Figure 2). Next, the sensitivity of D-xylose uptake to D-glucose was analyzed with 50 mM D-

xylose and increasing D-glucose concentrations. Now, the DS71054-evo6 strain showed 

significant improved D-xylose uptake in the presence of high concentrations of D-glucose as 

compared to DS71054-evoB and DS71054-evo3 (Figure 2) and these data correlate with the 

improved growth rates on D-xylose in the presence of high concentrations of D-glucose (Figure 

1). D-glucose uptake, at a saturating concentration of 500 mM, by DS71054 and the evolved 

mutant strains evo3-evo6 showed no clear trend but was not decreased during the evolution 

(Supplemental Figure 2). To identify the possible targets responsible for the glucose tolerant D-

xylose uptake, all highly expressed HXT transporters (HXT1-7) of DS71054-evo3, DS71054-evo4 

and DS71054-evo6 were sequenced. In none of these Hxt transporters mutations were 

identified, but amplification of HXT7 failed in DS71054-evo6. Further analysis revealed that in 
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DS71054-evo6 HXT36 was fused to HXT7 at position 1209 creating a novel chimer HXT37, 

explaining also the failed amplification of HXT7 in DS71054-evo6. The rearrangements from 

HXT3 to HXT36 and to HXT37 are most likely based on a fragment of 240 bp which is entirely 

conserved in all three transporters. HXT37 differs from HXT36 at 3 base-pairs (T1623C, G1657A 

and T1668C) of which only one causes an amino acid change (A556T). The isoleucine mutation 

at position 367, responsible for the decreased D-glucose affinity in Hxt36, however, remained 

unaltered (Figure 3).  

In order to determine if Hxt37 N367I is responsible for the improved D-xylose uptake in 

DS71054-evo6, uptake experiments were performed using the hexose transporter deletion 

strain DS68625 overexpressing Hxt36 N367I (Nijland et al. 2014) and Hxt37 N367I. In both 

strains D-xylose uptake was measured in the presence of various concentrations of D-glucose, 

but no differences in uptake characteristics were observed between both chimeras 

(Supplemental Figure 3). Likewise, no difference in the D-xylose affinity and transport rate 

between both chimeric transporters was evident (Supplemental Figure 4). 

 

Morphological analysis and ploidy analysis 

In order to study possible morphological changes in DS71054-evo6 compared to DS71054, both 

strains were aerobically cultivated in MM containing 2% D-xylose for 16 hours. The average cell 

volume and cell surface was measured using ImageJ and BudJ. The cell surface area (Figure 4) of 

DS71054-evo6 (92.3 ± 3.5 μm2) was significantly enlarged as compared to DS71054 (61.3 ± 2.3 

μm2) which increased the cell volume almost 2-fold; from 45.6 ± 2.6 μm3 to 82.2 ± 5.5 μm3 in 
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DS71054 and DS71054-evo6, respectively (Figure 4, Supplemental Figure 5). The increased cell 

surface area was not observed in the other evolved predecessors (data not shown), whereas 

these also show improved D-xylose uptake, albeit to a lesser extent. Therefore, the increased 

cell surface is only one of the factors in the improved D-xylose phenotype in DS71054-evo6.  

Increased cell volume, due to increased ploidy, was observed in previous studies using 

evolutionary engineering (Oud et al. 2013; Venkataram et al. 2016; Papapetridis et al. 2018). In 

order to analyze the ploidy of DS71054-evo6 the strain was subjected to propidium iodide 

staining of the DNA content (Haase and Lew 1997). The haploid DS71054 strain and the diploid 

CEN.PK113-7D strain were used as controls. Flow cytometry analysis using FACS yielded a single 

and double (of dividing cells) copy of the genome in DS71054 strain and double and quadruple 

(of dividing cells) copies in the diploid CEN.PK113-7D strain. The DS71054-evo6 genomic copy 

number clearly coincides with the diploid CEN.PK113-7D strain therefor we conclude that the 

cell size increase is due to genome duplication from haploid to diploid (Supplemental Figure 6).  

 

Transcriptomic analysis 

Transcriptional analysis was performed in DS71054 and the evolved strain DS71054-evo6. In 

order to keep the growth rates comparable, the strains were grown aerobically in MM 

containing 3% D-xylose, in the presence of 6% D-glucose, for 7 hours. The total mRNA was 

isolated and sequenced in duplicate and the fold changes (FC) were determined comparing the 

DS71054 strain with DS71054-evo6. In comparison, 88 genes were at least 3-fold up-regulated 

(Supplemental Table 2) and 113 genes were at least 3-fold down-regulated (Supplemental Table 
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3) in DS71054-evo6 as compared to the DS71054 strain. Flo1, a lectin-like protein involved in 

flocculation, shows a major up-regulation (55.5x FC) explaining the flocculating phenotype. In 

the genome database of CEN.PK113-7D, the predecessor of the DS71054 lineage, Flo1 is missing 

(Nijkamp et al. 2012). A similar observation was made in a recent study (Jenjaroenpun et al. 

2018) but here FLO1 was annotated as A0096W, which is located on chromosome 1 and which 

shows about 80 and 81 % identity with Flo1 at the DNA and protein level, respectively. Upon 

deletion of FLO1 (or A0096W) in the DS71054-evo6 strain, the flocculation was abolished (data 

not shown). However, the phenotype of increased cell size of DS71054-evo6-Δflo1 and the 

improved D-xylose consumption in the presence of D-glucose was not altered (data not shown). 

Importantly, in the DS71054-evo6 strain, the transporters genes of the HXT family show 

a remarkable down-regulation: HXT1 (8.8-fold), HXT2 (17.1-fold), HXT5 (4.2-fold) and HXT7 (∞). 

The apparent down-regulation of HXT7 in DS71054-evo6 is due to the formation of the chimeric 

Hxt37. On the other hand, expression of the Hxt36/Hxt37 N367I mutant is not significantly 

altered in DS71054-evo6 as compared to the DS71054 strain. Overall, the Hxt transporter 

landscape in DS71054-evo6, is severely altered leaving only two highly expressed Hxt 

transporters in DS71054-evo6, i.e. Hxt37 N367I and Hxt4 (Figure 5). Furthermore, the 

expression of all plasma membrane transporters combined, which is mainly based on the severe 

down-regulation of the hexose transporters, is decreased by 21 ± 0.1 % in DS71054-evo6 

compared to DS71054. In contrast, the combined expression levels of all genes is decreased by 

only 1 ± 0.04 %. The decreased expression of transporters could create additional space on the 

cytoplasmic membrane for an enhanced expression of Hxt37-N367I. Space limitations for 

permease insertion in the cytoplasmic membrane was observed earlier (Hennaut, Hilger and 
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Grenson 1970). These results suggest that the improved D-xylose consumption by the evolved 

DS71054-evo6 strain is also caused by the reduced expression of HXT1, HXT2 and HXT5 and the 

deletion of HXT7. 

 Among the up-regulated genes three distinct groups were detected (using the String-

database; https://string-db.org/): cell cycle progression (e.g. CLB1, CLN2 and SWI5), methionine 

metabolism (e.g. MET1, MET3 and MET5) and iron/copper metabolism (e.g. TIS1, FET3 and 

CCC2). The genes involved in cell cycle progression are most likely upregulated due to the 

change in ploidy in DS71054-evo6. Upregulation observed for: Clb2 (8.2 ± 0.5), Pcl1 (5.7 ± 0.8), 

Clb1 (4.5 ± 0.3), Cln2 (4.1 ± 0.3), Swi5 (3.9 ± 0.2) and Cln1 (3.8 ± 0.2). To our knowledge, there is 

no relationship between methionine metabolism or iron/copper metabolism and xylose 

transport/consumption. 

 

Genome Analysis 

To further identify the genotypic changes in the evolved strains, genome sequencing was 

performed. This revealed 50 coding mutations in the DS71054 strain as compared to 

CEN.PK113-7D (Nijkamp et al. 2012) of which 36 cause an amino acid change. DS71054 was 

used as a new reference to analyze the mutations in DS71054-evoB, DS71054-evo4 and 

DS71054-evo6. In DS71054-evoB, the N367I mutation was first introduced and remained 

unaltered in DS71054-evo4 and DS71054-evo6. Some mutations in DS71054-evo4 were lost in 

DS71054-evo6 and were therefore considered as not relevant for the altered phenotype. The 

S317Y mutation in Mal11, encoding a high-affinity maltose transporter, seems interesting in 
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relation to a recent report suggesting that Mal11, when overexpressed, improves growth on D-

xylose (Guirimand et al. 2019). Importantly, in that study a direct role of Mal11 in D-xylose 

uptake was not confirmed. To test if the S317Y mutation could change the specificity of Mal11 

towards D-xylose, Mal11 and Mal11 S317Y were overexpressed in strain DS68625 (Nijland et al. 

2014). Both transporters were unable to restore growth on D-xylose unlike overexpression of 

Hxt2 (Supplemental Figure 7A). In contrast, Mal11 supported growth on D-glucose by strain 

DS68625. Interestingly, the Mal11 S317Y mutant was unable to support growth on D-glucose 

(Supplemental Figure 7B) suggesting that the mutation caused a further decrease in D-glucose 

uptake capacity of the DS71054-evo6 strain. A further interesting mutation (G369S) in DS71054-

evo4 (Table 1) was observed in Pbs2 which encodes a Mitogen-Activated Protein Kinase Kinase 

(MAPKK), an scaffold protein integral to the osmoregulatory HOG (High-osmolarity glycerol) 

signaling pathway which affects gene expression (Hohmann 2009). Deletion of Hog1, as well as 

Pbs2, severely decreased the Hxt1 expression level (Tomás-Cobos et al. 2004) which could link 

the G369S mutation in Pbs2 to reduced expression of Hxt1 in DS71054-evo4. Furthermore, Pbs2 

in DS71054-evo6 obtained another mutation (Q60stop) causing a truncation of Pbs2 therefore 

significantly lowering the expression level of Hxt1. The other mutations observed in DS71054-

evo4 and DS71054-evo6 could contribute to the phenotype as well but no direct evidence was 

found that these genes influence the expression of the hexose transporter landscape or 

glycolysis (Table 1). Notably, all observed mutations and SNPs were homozygous in DS71054-

evo6 indicating that the change in ploidy in this strain occurred in the last phase of the 

evolutionary engineering.    
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Mixed culture fermentations 

To examine co-consumption of D-glucose and D-xylose, a mixed strain fermentation, including 

the D-glucose consuming strain CEN.PK113-7D and the improved D-xylose consuming strain 

DS71054-evo6-Δflo1, was compared to the DS68616 strain which consumes D-glucose and D-

xylose sequentially. The DS68616 strain was chosen for comparison with the two strain set-up 

since it is an industrially developed strain, and therefore consumes D-xylose fast. Industrial 

sugar concentrations were used of 7 % D-glucose and 3 % D-xylose and the DS68616 strain was 

inoculated at a starting OD600 of 10 whereas the mixture of DS71054-evo6-Δflo1 and 

CEN.PK113-7D was inoculated in a 2:1 ratio at a starting OD600 of 6.67 and 3.33, respectively 

(Figure 6). During the fermentation the strain ratio was analyzed using qPCR in which the GRE3 

gene was amplified of Cen.PK113-7D and a fragment spanning the promotor region and the 

terminator region outside of the deleted GLK1 gene of DS71054-evo6-Δflo1. ACT1 was used as 

reference to normalize for the amount of DNA (Supplemental Table 4). This ratio changed from 

2:1 to 1:2, which fits the theoretical ratio based on sugar consumption (Supplemental Figure 8). 

In the single strain fermentation the D-xylose conversion rate (Q D-xylose) in the DS68616 strain 

is, due to the inhibiting effect of D-glucose on D-xylose transport, low (0.128 ± 0.007 g D-

xylose/gDW.h) in the first 10 hours of the fermentation and increases only upon the (complete) 

consumption of D-glucose. In the mixed strain fermentation, D-xylose consumption starts 

immediately at increased D-xylose conversion rate (0.330 ± 0.007 g D-xylose/gDW.h) even with 

the decreased cell density (OD600) of 6.67 of DS71054-evo6-Δflo1 as compared to DS68616 

(OD600 of 10). The gDW (gram dry weight) normalization in the mixed strain fermentation was 
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performed using the combined OD600 of CEN.PK113-7D and DS71054-evo6-Δflo1. The D-glucose 

conversion rate, due to the lower inoculum of CEN.PK113-7D, is decreased to 0.661 ± 0.015 g D-

glucose/gDW.h versus 0.877 ± 0.041 g D-glucose/gDW.h in DS68616. The improved co-

consumption of DS71054-evo6-Δflo1 and CEN.PK113-7D yields, at the end of the fermentation 

(15 hours), significantly decreased residual sugar concentrations of 4.58 ± 0.07 g sugar as 

compared to DS68616 (8.76 ± 1.0 g sugar) (Table 2). Furthermore, the DS71054-evo6-Δflo1 and 

CEN.PK113-7D mixture showed a decreased yield (Y) of glycerol (0.045 ± 0.001 g glycerol/g 

sugar) and biomass (0.0866 ± 0.0034 gDW/g sugar) but increased production yield of ethanol 

(0.386 ± 0.004 g ethanol/g sugar) (Table 2).   

 

DISCUSSION 

The use of lignocellulosic biomass for ethanol production is a promising technology for the 

additional supply of energy from renewable and non-food resources. The main hurdle to 

overcome is the efficient co-fermentation of hexoses and pentoses since transport rates for 

pentoses in general, and D-xylose in particular, are insufficient. In recent studies, strains lacking 

all hexokinases have been used to improve the D-xylose specificity of the endogenous hexose 

transporters, and most significant results were obtained by mutation of a conserved asparagine 

in transmembrane segment 8 in a set of Hxt transporters (Farwick et al. 2014; Nijland et al. 

2014; Reznicek et al. 2015; Shin et al. 2015). This mutation reduces or even abolishes D-glucose 

transport, while having little impact on the D-xylose transport affinity. However, a major caveat 

with the mutation is that it reduces the D-xylose transport rate, whereas high rates are required 
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for efficient D-xylose utilization. To elevate glucose-insensitive rates of D-xylose uptake, we 

have conduced further evolutionary engineering of the hexokinase deletion strain DS71054-

evoB that contains the N367I mutation in the chimeric Hxt36 transporter (Nijland et al. 2014). 

More stringent conditions were imposed to allow these cells to grow with high rates on D-xylose 

in the presence of competing D-glucose and this yielded the DS71054-evo6 strain which shows a 

growth rate on D-xylose in the presence of a 10-fold concentration of D-glucose which is nearly 

identical to the growth rate on solely D-xylose. Transcriptome and genomic analysis 

demonstrate that in this strain the transporter landscape has been altered quite dramatically. 

First, Hxt36 N367I was converted into Hxt37 N367I. Although the uptake characteristics 

remained unchanged, the Hxt37 N367I fusions resulted in the loss of the D-glucose transporter 

Hxt7. Possibly, this fusion also leads to a more stable localization in the plasma membrane of 

the Hxt37 protein making it less sensitive glucose-induced downregulation (catabolite 

inactivation). Due to mutations in Pbs2 in DS71054-evo4 and DS71054-evo6, the expression of 

Hxt1 is severely decreased. In DS71054-evo6, also Hxt2 showed significantly reduced expression 

levels, leaving Hxt4 as the only D-glucose transporter. In these strains, D-glucose uptake is 

further decreased by the S317Y mutation in the maltose transporter Mal11 which can support 

glucose uptake when overexpressed. Importantly, the down-regulation and deletion of the Hxt 

transporters could lead to an increase in “plasma membrane space” thereby possibly allowing 

improved localization and/or decreased D-glucose-induced proteolytic degradation (Krampe et 

al. 1998) of Hxt37 N367I. This may contribute to overall reduced sensitivity of D-xylose uptake 

for D-glucose. Interestingly, uptake rate of several exogenous substrates have been measured in 

a series of isogenic S. cerevisiae strains that were haploid, diploid, triploid and tetraploid 
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(Hennaut, Hilger and Grenson 1970). For three substrates, whose transport is catalyzed by 

constitutively expressed permeases, the relative uptake rate (in unit of cell mass or in unit per 

genome) was decreased in the same proportions as the surface to volume ratio. For other 

substrates, whose transport is inducible, this limitation was not observed. It was suggested that 

the space for permease insertion in the cytoplasmic membrane is limited for the constitutive 

permeases studied (Hennaut, Hilger and Grenson 1970). In this respect, we previously observed 

that upon the expression of Hxt11-GFP in the Hxt deletion strain (DS68625) and parental 

DS68616 strain, a higher level of GFP localized to the cytoplasmic membrane in the DS68625 Hxt 

deletion strain (Shin HY, personal communications).  

Not only the overall expression of Hxt transporter genes was decreased, also the cell 

surface area of the DS71054-evo6 strain as compared to DS71054 was significantly enlarged. 

Cell volume in S. cerevisiae is related to ploidy and indeed flow cytometric analysis showed 

diploidy in DS71054-evo6 whereas the DS71054 strain, as the starting point of the evolutionary 

engineering, was haploid. The increased cell surface area, caused by the genome duplication, 

may also contribute to an improved expression of the specific D-xylose transporter Hxt37 N367I. 

Although changes in ploidy has been studied extensively, the exact advantage of diploid strains, 

excluding the increased resistance towards harmful mutations (Janssen et al. 2011; Crasta et al. 

2012), is still unclear (Gorter de Vries, Pronk and Daran 2017). In industrial settings, in which S. 

cerevisiae grows under stress conditions, increased genome copy numbers have been observed 

(reviewed by Gorter de Vries, Pronk and Daran 2017).  

In a mixed strain fermentation with a D-glucose specialist (CEN.PK113-7D) and a D-xylose 

specialist (DS71054-evo6-Δflo1) co-consumption of both sugars was observed with decreased 
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residual sugar concentrations at the end of the fermentation. Decreased biomass and glycerol 

yield allowed for increased ethanol yield in the mixed strain fermentation (0.386 ± 0.004 g/g 

sugar) versus DS68616 (0.372 ± 0.0007 g/g sugar). A similar mixed strain fermentation was 

shown recently with three strains consuming D-glucose, D-xylose or L-arabinose (Verhoeven et 

al. 2018). However, D-xylose consumption was still severely inhibited, most likely because D-

xylose uptake was insufficient. 

 

CONCLUSIONS 

Evolutionary engineering is an effective method to improve D-xylose consumption in the 

presence of high concentrations of D-glucose by a D-xylose consuming S. cerevisiae strain in 

which the four hexokinase genes are deleted. The evolved strain supports high rates of D-xylose 

fermentation at industrial relevant sugar concentrations, which is accompanied with an altered 

morphology (due to the genome duplication) and a changed transporter landscape. Glucose 

insensitive D-xylose transport, via a novel chimeric Hxt37 transporter and the down-regulation 

of many Hxt transporters in the evolved strain resulted in an elevated rate of glucose-insensitive 

D-xylose consumption. Co-fermentation of the improved D-xylose fermenting strain together 

with a D-glucose consuming strain improved the fermentation rate and ethanol yield at 

industrial relevant carbohydrate concentrations 
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Figure 1. Growth (OD600) of the DS71054 hexokinase deletion strain () and the evolved 

derivatives DS71054-evoB (), DS71054-evo3 (), DS71054-evo4 (▲) and DS71054-evo6 () in 

mineral medium supplemented with 1 % D-xylose and 10 % D-glucose. Inset shows the growth 

(OD600) of DS71054-evo6 on 1 % D-xylose and 10 % D-glucose () and solely 1 % D-xylose (). 

Error bars were obtained from biological triplicates. 
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Figure 2. D-xylose uptake in DS71054 (), DS71054-evoB (), DS71054-evo3 () and DS71054-

evo6 (). Uptakes (in nmol/mgDW.min) were performed with 50 mM 14C D-xylose and various 

concentrations of D-glucose (0, 50, 100, 200 and 500 mM). Errors are the standard deviation of 

two independent experiments. 
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Figure 3. Genomic localization on chromosome IV of HXT3, HXT6 and HXT7 in S. cerevisiae 

S288C and the rearrangements in DS71054, DS71054-evoB and DS71054-evo6 including (in red) 

the asparagine to isoleucine mutation at position 367.  
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Figure 4. Morphological analysis of DS71054 (A1) and DS71054-evo6 (A2) grown for 16 hours in 

MM containing 2% D-xylose (the white bars indicates 1 μm). The cell surface area (in μm2) of 

DS71054 (dashed line) was compared to DS71054-evo6 (black line) (A). The extracted cell 

surface areas (in μm2), volumes (in μm3) and cell surface area to volume ratios (in μm) are 

depicted in the table (B). 
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Figure 5. RNAseq data of the main Hxt transporters in the DS71054 hexokinase deletion strain 

(white bars) and evolved derivative DS71054-evo6 (grey bars). Depicted on the left vertical ax is 

the absolute normalized expression of HXT1, HXT2, HXT36/HXT37, HXT4, HXT5 and HXT7. RNA 

was isolated after 7 hours of aerobic growth in mineral medium supplemented with 3 % D-

xylose and 6 % D-glucose. 
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Figure 6. Anaerobic fermentation of DS68616 (A) and the mixed co-fermentation of CEN.PK113-

7D together with the hexokinase deletion strain DS71054-evo6 (B) on mineral medium 

supplemented with 7 % D-glucose and 3 % D-xylose. Depicted are the D-glucose () and D-

xylose (▲) concentration and the biomass () and ethanol () formation. Starting OD600 was 

10.0 and the error bars were obtained from biological duplicates. 
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DS71054-evoB 

Gene mutation annotation 

HXT36 N367I Low affinity glucose transporter 

PHO12 Q354K acid phosphatases 
 

 

DS71054-evo4 

Gene mutation annotation 

HXT36 N367I Low affinity glucose transporter 

SPC3 V42A Subunit of signal peptidase complex 

PBS2 G369S MAP kinase kinase of the HOG signaling pathway 

URA2 F1447L Bifunctional carbamoylphosphate synthetase 

WSC4 T229I Endoplasmic reticulum (ER) membrane protein 

SUP35 Q70L Translation termination factor eRF3; mRNA deadenylation 
 

 

DS71054-evo6 

Gene mutation annotation 

Hxt37 N367I Low affinity glucose transporter 

SPC3 V42A Subunit of signal peptidase complex 

PBS2 Q60* MAP kinase kinase of the HOG signaling pathway 

URA2 F1447L Bifunctional carbamoylphosphate synthetase 

MAL11 S317Y High-affinity maltose transporter 

RRP8 Q148K Nucleolar rRNA methyltransferase 

AQY1 I99T Spore-specific water channel 

SRP102 D117N Signal recognition particle (SRP) receptor 

GFD2 insA (791nt) Protein of unknown function 

MKT1 A297S Protein that forms a complex with Pbp1p 

Telomer (cm001533) R103Q hypothetical protein 

Telomer (cm001533) F38S hypothetical protein 

Telomer (cm001533) D43E hypothetical protein 

 

Table 1. Mutations in coding regions in DS71054-evoB, DS71054-evo4 and DS71054-evo6 versus 

DS71054. Depicted in bold the Hxt36/37 N367I mutation and underlined the mutations in Pbs2 

in DS71054-evo4 and DS71054-evo6. 
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  DS68616 

 

CEN.PK113-7D + 

DS71054 evo6 

  AVG Std AVG Std 

Residual sugar (g/l) 8.76 1.00 4.58 0.07 

      

Q D-glucose * (g D-glc/gDW.h) 0.877 0.041 0.661 0.015 

Q D-xylose * (g D-xyl/gDW.h) 0.128 0.007 0.330 0.007 

      

Y ethanol (g EtOH/g sugar) 0.372 0.007 0.386 0.004 

Y glycerol (g Gly/g sugar) 0.051 0.001 0.045 0.002 

Y acetic acid (g AA/g sugar) 0.0039 0.0003 0.0039 0.0001 

Y biomass (gDW/g sugar) 0.0923 0.0004 0.0866 0.0034 

* The D-glucose and D-xylose conversion rates (Q) were calculated from 4 to 10 hours 

 

Table 2. Overview of the fermentation parameters extracted from the anaerobic fermentation 

of DS68616 and the mixed co-fermentation of CEN.PK113-7D together with the hexokinase 

deletion strain DS71054-evo6 on mineral medium supplemented with 7 % D-glucose and 3 % D-

xylose  
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