8,101 research outputs found

    Two phase detonation studies

    Get PDF
    An experimental study of the passage of a shock wave over a burning fuel drop is described. This includes high speed framing photographs of the interaction taken at 500,000 frames per second. A theoretical prediction of the ignition of a fuel drop by a shock wave is presented and the results compared with earlier experimental work. Experimental attempts to generate a detonation in a liquid fuel drop (kerosene)-liquid oxidizer drop (hydrogen peroxide)-inert gas-environment are described. An appendix is included which gives the analytical prediction of power requirements for the drop generator to produce certain size drops at a certain mass rate. A bibliography is also included which lists all of the publications resulting from this research grant

    Machine learning -- based diffractive imaging with subwavelength resolution

    Full text link
    Far-field characterization of small objects is severely constrained by the diffraction limit. Existing tools achieving sub-diffraction resolution often utilize point-by-point image reconstruction via scanning or labelling. Here, we present a new imaging technique capable of fast and accurate characterization of two-dimensional structures with at least wavelength/25 resolution, based on a single far-field intensity measurement. Experimentally, we realized this technique resolving the smallest-available to us 180-nm-scale features with 532-nm laser light. A comprehensive analysis of machine learning algorithms was performed to gain insight into the learning process and to understand the flow of subwavelength information through the system. Image parameterization, suitable for diffractive configurations and highly tolerant to random noise was developed. The proposed technique can be applied to new characterization tools with high spatial resolution, fast data acquisition, and artificial intelligence, such as high-speed nanoscale metrology and quality control, and can be further developed to high-resolution spectroscop

    Ejaculate allocation by male sand martins, Riparia riparia

    Get PDF
    Males of many species allocate sperm to ejaculates strategically in response to variation in the risk and intensity of sperm competition. The notable exception is passerine birds, in which evidence for strategic allocation is absent. Here we report the results of a study testing for strategic ejaculate allocation in a passerine bird, the sand martin (Riparia riparia). Natural ejaculates were collected from males copulating with a model female. Ejaculates transferred in the presence of a rival male contained significantly more sperm than ejaculates transferred in the absence of a rival male. There was no evidence that this difference was due to the confounding effects of the year of ejaculate collection, the identity of the model female, the colony, the stage of season or the period of the day in which ejaculates were collected. A more detailed examination of the ejaculate patterns of individual males, achieved by the DNA profiling of ejaculates, provided additional evidence for strategic allocation of sperm

    A field expansions method for scattering by periodic multilayered media

    Get PDF
    The interaction of acoustic and electromagnetic waves with periodic structures plays an important role in a wide range of problems of scientific and technological interest. This contribution focuses upon the robust and high-order numerical simulation of a model for the interaction of pressure waves generated within the earth incident upon layers of sediment near the surface. Herein described is a boundary perturbation method for the numerical simulation of scattering returns from irregularly shaped periodic layered media. The method requires only the discretization of the layer interfaces (so that the number of unknowns is an order of magnitude smaller than finite difference and finite element simulations), while it avoids not only the need for specialized quadrature rules but also the dense linear systems characteristic of boundary integral/element methods. The approach is a generalization to multiple layers of Bruno and Reitichā€™s ā€œMethod of Field Expansionsā€ for dielectric structures with two layers. By simply considering the entire structure simultaneously, rather than solving in individual layers separately, the full field can be recovered in time proportional to the number of interfaces. As with the original field expansions method, this approach is extremely efficient and spectrally accurate
    • ā€¦
    corecore