294 research outputs found
Correlated percolation and the correlated resistor network
We present some exact results on percolation properties of the Ising model,
when the range of the percolating bonds is larger than nearest-neighbors. We
show that for a percolation range to next-nearest neighbors the percolation
threshold Tp is still equal to the Ising critical temperature Tc, and present
the phase diagram for this type of percolation. In addition, we present Monte
Carlo calculations of the finite size behavior of the correlated resistor
network defined on the Ising model. The thermal exponent t of the conductivity
that follows from it is found to be t = 0.2000 +- 0.0007. We observe no
corrections to scaling in its finite size behavior.Comment: 16 pages, REVTeX, 6 figures include
Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study
Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension
Correcting for the Effects of Interstellar Extinction
This paper addresses the issue of how best to correct astronomical data for
the wavelength-dependent effects of Galactic interstellar extinction. The main
general features of extinction from the IR through the UV are reviewed, along
with the nature of observed spatial variations. The enormous range of
extinction properties found in the Galaxy, particularly in the UV spectral
region, is illustrated. Fortunately, there are some tight constraints on the
wavelength dependence of extinction and some general correlations between
extinction curve shape and interstellar environment. These relationships
provide some guidance for correcting data for the effects of extinction.
Several strategies for dereddening are discussed along with estimates of the
uncertainties inherent in each method. In the Appendix, a new derivation of the
wavelength dependence of an average Galactic extinction curve from the IR
through the UV is presented, along with a new estimate of how this extinction
law varies with the parameter R = A(V)/E(B-V). These curves represent the true
monochromatic wavelength dependence of extinction and, as such, are suitable
for dereddening IR--UV spectrophotometric data of any resolution, and can be
used to derive extinction relations for any photometry system.Comment: To appear in PASP (January 1999) 14 pages including 4 pages of
figures Uses emulateapj style. PASP, in press (January 1999
Motion-resolved fat-fraction mapping with whole-heart free-running multiecho GRE and pilot tone.
To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification.
(N <sub>TE</sub> = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R <sub>2</sub> *, and B <sub>0</sub> maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using N <sub>TE</sub> = 4 and N <sub>TE</sub> = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition.
The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with N <sub>TE</sub> = 4 and N <sub>TE</sub> = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat).
Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with N <sub>TE</sub> = 8 echoes in 6:15 min
Phase diagram of the restricted solid-on-solid model coupled to the Ising model
We study the phase transitions of a restricted solid-on-solid model coupled
to an Ising model, which can be derived from the coupled XY-Ising model. There
are two kinds of phase transition lines. One is a Ising transition line and the
other is surface roughening transition line. The latter is a KT transition line
from the viewpoint of the XY model. Using a microcanonical Monte Carlo
technique, we obtain a very accurate two dimensional phase diagram. The two
transition lines are separate in all the parameter space we study. This result
is strong evidence that the fully frustrated XY model orders by two separate
transitions and that roughening and reconstruction transitions of crystal
surfaces occur separately.Comment: 17 pages, source RevTeX file and 8 PS figures are tarred and
compressed via uufile
Abundances and Physical Conditions in the Warm Neutral Medium Towards mu Columbae
We present ultraviolet interstellar absorption line measurements for the
sightline towards the O9.5 V star mu Columbae obtained with the Goddard High
Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. These
archival data represent the most complete GHRS interstellar absorption line
measurements for any line of sight towards an early-type star. The 3.5 km/s
resolution of the instrument allow us to accurately derive the gas-phase column
densities of many important ionic species in the diffuse warm neutral medium
using a combination of apparent column density and component fitting
techniques, and we study in detail the contamination from ionized gas along
this sightline. The low-velocity material shows gas-phase abundance patterns
similar to the warm cloud (cloud A) towards the disk star zeta Oph, while the
component at v = +20.1 km/s shows gas-phase abundances similar to those found
in warm halo clouds. We find the velocity-integrated gas-phase abundances of
Zn, P, and S relative to H along this sightline are indistinguishable from
solar system abundances. We discuss the implications of our gas-phase abundance
measurements for the composition of interstellar dust. The relative ionic
column density ratios of the intermediate velocity components show the imprint
both of elemental incorporation into grains and (photo)ionization. The
components at v = -30 and -48 km/s along this sightline likely trace shocked
gas with very low hydrogen column densities. Appendices include a new
derivation of the GHRS instrumental line spread function, and a new very
accurate determination of the total H I column along this sightline. (Abridged)Comment: Accepted for publication in the Astrophysical Journal. 80 pages
including 19 embedded figures and 12 embedded tables. Version with higher
resolution figures can be downloaded from
http://fuse.pha.jhu.edu/~howk/Papers/papers.htm
Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells
Liquid crystal colloid materials are described based on the liquid crystal (LC) E7 and submicron sized poly(methyl methacrylate-co-divinylbenzene) particles. Application of a thermal treatment to the composite material produces a finely dispersed network of the internally crosslinked polymeric inclusions in the LC-E7. Dynamic rheological measurements on the LC colloids show that the presence of this network imposes pronounced viscoelastic behavior on the material, which may be exploited in the manufacturing of large-area twisted nematic (TN) electro-optical cells via continuous methods as an alternative to the currently available batchwise routes. The electro-optical characteristics of TN cells based on the composite material are approximately comparable to the electro-optical characteristics of a reference cell filled with pure LC E7, which ensures that the largely increased viscoelasticity of the composite does not lead to a degradation of electro-optical propertie
Thermal roughening of an SOS-model with elastic interaction
We analyze the effects of a long-ranged step-step interaction on thermal
roughening within the framework of a solid-on-solid model of a crystal surface
by means of Monte Carlo simulation. A repulsive step-step interaction is
modeled by elastic dipoles located on sites adjacent to the steps. In order to
reduce the computational effort involved in calculating interaction energy
based on long-ranged potentials, we employ a multi-grid scheme. As a result of
the long-range character of the step interaction, the roughening temperature
increases drastically compared to a system with short-range cutoff as a
consequence of anti-correlations between surface defects
Magnetic behaviour of Eu_2CuSi_3: Large negative magnetoresistance above Curie temperature
We report here the results of magnetic susceptibility,
electrical-resistivity, magnetoresistance (MR), heat-capacity and ^{151}Eu
Mossbauer effect measurements on the compound, Eu_2CuSi_3, crystallizing in an
AlB_2-derived hexagonal structure. The results establish that Eu ions are
divalent, undergoing long-range ferromagnetic-ordering below (T_C=) 37 K. An
interesting observation is that the sign of MR is negative even at temperatures
close to 3T_C, with increasing magnitude with decreasing temperature exhibiting
a peak at T_C. This observation, being made for a Cu containing magnetic
rare-earth compound for the first time, is of relevance to the field of
collosal magnetoresistance.Comment: To appear in PRB, RevTex, 4 pages text + 6 psFigs. Related to our
earlier work on Gd systems (see cond-mat/9811382, cond-mat/9811387,
cond-mat/9812069, cond-mat/9812365
Disordered Flat Phase and Phase Diagram for Restricted Solid on Solid Models of Fcc(110) Surfaces
We discuss the results of a study of restricted solid-on-solid models for fcc
(110) surfaces. These models are simple modifications of the exactly solvable
BCSOS model, and are able to describe a missing-row reconstructed
surface as well as an unreconstructed surface. They are studied in two
different ways. The first is by mapping the problem onto a quantum spin-1/2
one-dimensional hamiltonian of the Heisenberg type, with competing
couplings. The second is by standard Monte Carlo simulations. We find phase
diagrams with the following features, which we believe to be quite generic: (i)
two flat, ordered phases (unreconstructed and missing-row reconstructed); a
rough, disordered phase; an intermediate disordered flat (DF) phase,
characterized by monoatomic steps, whose physics is shown to be akin to that of
a dimer spin state. (ii) a transition line from the reconstructed
phase to the DF phase showing exponents which appear to be close, within our
numerical accuracy, to the 2D-Ising universality class. (iii) a critical
(preroughening) line with variable exponents, separating the unreconstructed
phase from the DF phase. Possible signatures and order parameters of the DF
phase are investigated.Comment: Revtex (22 pages) + 15 figures (uuencoded file
- …