45 research outputs found

    Evidence for Rotation in the Galaxy at z=3.15 Responsible for a Damped Lyman-alpha Absorption System in the Spectrum of Q2233+1310

    Get PDF
    Proof of the existence of a significant population of normal disk galaxies at redshift z>2 would have profound implications for theories of structure formation and evolution. We present evidence based on Keck HIRES observations that the damped Lyman-alpha absorber at z=3.15 toward the quasar Q2233+1310 may well be such an example. Djorgovski et al have recently detected the Lyman-alpha emission from the absorber, which we assume is at the systemic redshift of the absorbing galaxy. By examining the profiles of the metal absorption lines arising from the absorbing galaxy in relation to its systemic redshift, we find strong kinematical evidence for rotation. Therefore the absorber is likely to be a disk galaxy. The inferred circular velocity for the galaxy is >200 km/s. With a separation of ~17 kpc between the galaxy and the quasar sightline, the implied dynamic mass for the galaxy is >1.6x10(11) solar mass. The metallicity of the galaxy is found to be [Fe/H]=-1.4, typical of damped Lyman-alpha galaxies at such redshifts. However, in another damped galactic rotation is evident. In the latter case, the damped Lyman-alpha absorber occurs near the background quasar in redshift so its properties may be influenced by the background quasar. These represent the only two cases at present for which the technique used here may be applied. Future applications of the same technique to a large sample of damped Lyman-alpha galaxies may allow us to determine if a significant population of disk galaxies already existed only a few billion years after the Big Bang.Comment: AASTEX, 2 PS figures, accepted by ApJ, 6 pages total, replaced on 1-22-97, the only change is the enlarged figure

    Halo Geometry and Dark Matter Annihilation Signal

    Full text link
    We study the impact of the halo shape and geometry on the expected weakly interacting massive particle (WIMP) dark matter annihilation signal from the galactic center. As the halo profile in the innermost region is still poorly constrained, we consider different density behaviors like flat cores, cusps and spikes, as well as geometrical distortions. We show that asphericity has a strong impact on the annihilation signal when the halo profile near the galactic center is flat, but becomes gradually less significant for cuspy profiles, and negligible in the presence of a central spike. However, the astrophysical factor is strongly dependent on the WIMP mass and annihilation cross-section in the latter case.Comment: 5 pages, 4 figures, PR

    The Ellipticity of the Disks of Spiral Galaxies

    Get PDF
    The disks of spiral galaxies are generally elliptical rather than circular. The distribution of ellipticities can be fit with a log-normal distribution. For a sample of 12,764 galaxies from the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), the distribution of apparent axis ratios in the i band is best fit by a log-normal distribution of intrinsic ellipticities with ln epsilon = -1.85 +/- 0.89. For a sample of nearly face-on spiral galaxies, analyzed by Andersen and Bershady using both photometric and spectroscopic data, the best fitting distribution of ellipticities has ln epsilon = -2.29 +/- 1.04. Given the small size of the Andersen-Bershady sample, the two distribution are not necessarily inconsistent. If the ellipticity of the potential were equal to that of the light distribution of the SDSS DR1 galaxies, it would produce 1.0 magnitudes of scatter in the Tully-Fisher relation, greater than is observed. The Andersen-Bershady results, however, are consistent with a scatter as small as 0.25 magnitudes in the Tully-Fisher relation.Comment: 19 pages, 5 figures; ApJ, accepte

    Fabry Perot Halpha Observations of the Barred Spiral NGC 3367

    Full text link
    We report the gross properties of the velocity field of the barred spiral galaxy NGC 3367. The following values were found: inclination with respect to the plane of the sky, i=30 deg; position angle (PA) of receding semi major axis PA=51 and systemic velocity V(sys)=3032 km/s. Large velocity dispersion are observed of upt o 120 km/s in the nuclear region, of up to 70 km/s near the eastern bright sources just beyond the edge of the stellar bar where three spiral arms seem to start and in the western bright sources at about 10 kpc. Deviations from normal circular velocities are observed from all the disk but mainly from the semi circle formed by the string of south western Halpha sources. An estimate of the dynamical mass is M(dyn)=2x10^11 Msolar.Comment: Accepted to be published in May 2001 issue in the A.J. 19 pages, 7 figure

    3D MHD Modeling of the Gaseous Structure of the Galaxy: Setup and Initial Results

    Get PDF
    We show the initial results of our 3D MHD simulations of the flow of the Galactic atmosphere as it responds to a spiral perturbation in the potential. In our standard case, as the gas approaches the arm, there is a downward converging flow that terminates in a complex of shocks just ahead of the midplane density peak. The density maximum slants forward at high z, preceeded by a similarly leaning shock. The latter diverts the flow upward and over the arm, as in a hydraulic jump. Behind the gaseous arm, the flow falls again, generating further secondary shocks as it approaches the lower z material. Structures similar to the high z part of the gaseous arms are found in the interarm region of our two-armed case, while broken arms and low column density bridges are present in the four-armed case. We present three examples of what can be learned from these models.Comment: 33 pages, 17 figures. Accepted for publication in Apj. Better quality images in http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJ55782.preprint.pd

    The Low Velocity Wind from the Circumstellar Matter Around the B9V Star sigma Herculis

    Full text link
    We have obtained FUSE spectra of sigma Her, a nearby binary system, with a main sequence primary, that has a Vega-like infrared excess. We observe absorption in the excited fine structure lines C II* at 1037 A, N II* at 1085 A, and N II** at 1086 A that are blueshifted by as much as ~30 km/sec with respect to the star. Since these features are considerably narrower than the stellar lines and broader than interstellar features, the C II and N II are circumstellar. We suggest that there is a radiatively driven wind, arising from the circumstellar matter, rather than accretion as occurs around beta Pic, because of sigma Her's high luminosity. Assuming that the gas is liberated by collisions between parent bodies at 20 AU, the approximate distance at which blackbody grains are in radiative equilibrium with the star and at which 3-body orbits become unstable, we infer dM/dt ~ 6 * 10^-12 M_{sun}/yr. This wind depletes the minimum mass of parent bodies in less than the estimated age of the system.Comment: 6 pages, 3 figures, ApJ in pres

    U B V R I Photometry of Stellar Structures throughout the Disk of the Barred Galaxy NGC 3367

    Full text link
    We report new detailed surface U, B, V, R, and I photometry of 81 stellar structures in the disk of the barred galaxy NGC 3367. The images show many different structures indicating that star formation is going on in the most part of the disk. NGC 3367 is known to have a very high concentration of molecular gas distribution in the central regions of the galaxy and bipolar synchrotron emission from the nucleus with two lobes (at 6 kpc) forming a triple structure similar to a radio galaxy. We have determined the U, B, V, R, and I magnitudes and U - B, B - V, U - V, and V - I colors for the central region (nucleus), a region which includes supernovae 2003 AA, and 79 star associations throughout NGC 3367. Estimation of ages of star associations is very difficult due to several factors, among them: filling factor, metallicity, spatial distribution of each structure and the fact that we estimated the magnitudes with a circular aperture of 16 pixels in diameter, equivalent to 6.81.46''.8\sim1.4 kpc. However, if the colors derived for NGC 3367 were similar to the colors expected of star clusters with theoretical evolutionary star tracks developed for the LMC and had a similar metallicity, NGC 3367 show 51 percent of the observed structures with age type SWB I (few tens of Myrs), with seven sources outside the bright surface brightness visible disk of NGC 3367.Comment: Accepted for publication (abr 2007) in The Astronomical Journal (July 2007 issue

    Observational Constraints on Disk Heating as a Function of Hubble Type

    Full text link
    Current understanding of the secular evolution of galactic disks suggests that this process is dominated by two or more heating mechanisms, which increase the random motions of stars in the disk. In particular, the gravitational influence of giant molecular clouds and irregularities in the spiral potential have been proposed to explain the observed velocity dispersions in the solar neighborhood. Each of these mechanisms acts on different components of the stellar velocities, which affects the ratio of the vertical and radial components of the stellar velocity dispersion since the relative strengths of giant molecular clouds and spiral irregularities vary with Hubble type. A study of this ratio as function of Hubble type has the potential to provide strong constraints on disk heating mechanisms. We present major and minor axis stellar kinematics for four spiral galaxies of Hubble type from Sa to Sbc, and use the data to infer the ratios sigma_z/sigma_R in the galaxy disks. The results combined with two galaxies studied previously and with Milky Way data show that the ratio is generally in the range 0.5 - 0.8. There is a marginally significant trend of decreasing ratio with advancing Hubble type, consistent with the predictions of disk heating theories. However, the errors on individual measurements are large, and the absence of any trend is consistent with the data at the 1-sigma level. As a byproduct of our study, we find that three of the four galaxies in our sample have a central drop in their stellar line-of-sight velocity dispersion, a phenomenon that is increasingly observed in spiral galaxies. [ABRIDGED]Comment: 24 pages, LaTeX, 5 Postscript figures, to appear in AJ (Dec 2003

    Detection of a Corrugated Velocity Pattern in the Spiral Galaxy NGC 5427

    Get PDF
    Here we report the detection, in Halpha emission, of a radial corrugation in the velocity field of the spiral galaxy NGC 5427. The central velocity of the Halpha line displays coherent, wavy-like variations in the vicinity of the spiral arms. The spectra along three different arm segments show that the maximum amplitude of the sinusoidal line variations are displaced some 500 pc from the central part of the spiral arms. The peak blueshifted velocities appear some 500 pc upstream the arm, whereas the peak redshifted velocities are located some 500 pc downstream the arm. This kinematical behavior is similar to the one expected in a galactic bore generated by the interaction of a spiral density wave with a thick gaseous disk, as recently modeled by Martos & Cox (1998).Comment: Accepted for publication in Ap

    Global Star Formation Rates in Disk Galaxies and Circumnuclear Starbursts from Cloud Collisions

    Full text link
    We invoke star formation triggered by cloud-cloud collisions to explain global star formation rates of disk galaxies and circumnuclear starbursts. Previous theories based on the growth rate of gravitational perturbations ignore the dynamically important presence of magnetic fields. Theories based on triggering by spiral density waves fail to explain star formation in systems without such waves. Furthermore, observations suggest gas and stellar disk instabilities are decoupled. Following Gammie, Ostriker & Jog (1991), the cloud collision rate is set by the shear velocity of encounters with initial impact parameters of a few tidal radii, due to differential rotation in the disk. This, together with the effective confinement of cloud orbits to a two dimensional plane, enhances the collision rate above that for particles in a three dimensional box. We predict Sigma_{SFR}(R) proportional to Sigma_{gas} Omega (1-0.7 beta). For constant circular velocity (beta = 0), this is in agreement with recent observations (Kennicutt 1998). We predict a B-band Tully-Fisher relation: L_{B} proportional to v_{circ}^{7/3}, also consistent with observations. As additional tests, we predict enhanced star formation in regions with relatively high shear rates, and lower star formation efficiencies in clouds of higher mass.Comment: 27 pages including 3 figures and 2 tables. Accepted to ApJ. Expanded statistical analysis of cloud SF efficiency test. Stylistic changes. Data for figures available electronically at http://astro.berkeley.edu/~jt/disksfr.htm
    corecore