1,683 research outputs found
All conformally flat pure radiation metrics
The complete class of conformally flat, pure radiation metrics is given,
generalising the metric recently given by Wils.Comment: 7 pages, plain Te
Horse Pasture
Pastures for horses should be more than mere exercise lots. High quality pasture can supply enough protein, vitamins, and minerals to meet the nutritional needs of most pleasure horses at relatively low cost. Although pastures furnish substantial amounts of energy, working horses will likely need additional energy supplementation. In addition, pasture will help to maintain healthy animals by furnishing the bulk needed in horse rations, as well as exercise areas, sunshine, and fresh air.
The pasture should be enclosed by a safe, strong fence. Fresh water and shade should also be provided. The pasture should be large enough to encourage normal animal activity and also be free from poisonous plants and obstructions such as holes or rocks which could cause injury
Topological Hysteresis in the Intermediate State of Type-I Superconductors
Magneto-optical imaging of thick stress-free lead samples reveals two
distinct topologies of the intermediate state. Flux tubes are formed upon
magnetic field penetration (closed topology) and laminar patterns appear upon
flux exit (open topology). Two-dimensional distributions of shielding currents
were obtained by applying an efficient inversion scheme. Quantitative analysis
of the magnetic induction distribution and correlation with magnetization
measurements indicate that observed topological differences between the two
phases are responsible for experimentally observable magnetic hysteresis.Comment: 4 pages, RevTex
Origins of Sinuous and Braided Channels on Ascraeus Mons, Mars - A Keck Geology Consortium Undergraduate Research Project
Water has clearly played an important part in the geological evolution of Mars. There are many features on Mars that were almost certainly formed by fluvial processes -- for example, the channels Kasei Valles and Ares Vallis in the Chryse Planitia area of Mars are almost certainly fluvial features. On the other hand, there are many channel features that are much more difficult to interpret -- and have been variously attributed to volcanic and fluvial processes. Clearly unraveling the details of the role of water on Mars is extremely important, especially in the context of the search of extinct or extant life. In this project we built on our recent work in determining the origin of one channel on the southwest rift apron of Ascraeus Mons. This project, funded by the Keck Geology Consortium and involving 4 undergraduate geology majors took advantage of the recently available datasets to map and analyze similar features on Ascraeus Mons and some other areas of Mars. A clearer understanding of how these particular channel features formed might lead to the development of better criteria to distinguish how other Martian channel features formed. Ultimately this might provide us with a better understanding of the role of volcanic and fluvial processes in the geological evolution of Mars
Thermomechanical relaxation and different water states in cottonseed protein derived bioplastics
Thermomechanical relaxation events and different water states in cottonseed protein bioplastics are presented whilst investigating the effects of aldehyde cross-linking agents. Thermomechanical relaxation of cottonseed protein bioplastics associated with protein denaturation, moisture absorption and broad glass transitions (Tg) were observed from DSC and DMA measurements. It was shown that variation of the aldehyde influences the storage modulus at very low temperature (below Tg). From measurements of the water fusion point, enthalpy, vaporisation, and weight loss, three water states in the water-absorbed bioplastics are suggested; namely strongly-bound-to-polymer, weakly-bound-to-polymer and bulk-like water. The water content and unreacted cross-linking agents are influential factors in controlling formation of the different water states, whilst the selection of different aldehydes was found to be negligible. These results could be valuable for adjusting the thermomechanical relaxations of protein based bioplastics, and tailoring their properties in wet environments
Development and application of optical fibre strain and pressure sensors for in-flight measurements
Fibre optic based sensors are becoming increasingly viable as replacements for traditional
flight test sensors. Here we present laboratory, wind tunnel and flight test results of fibre
Bragg gratings (FBG) used to measure surface strain and an extrinsic fibre
Fabry–Perot
interferometric (EFFPI) sensor used to measure unsteady pressure. The calibrated full
scale resolution and bandwidth of the FBG and EFFPI sensors were shown to be 0.29% at
2.5 kHz up to 600 με and 0.15% at up to 10 kHz respectively up to 400 Pa. The wind tunnel
tests, completed on a 30% scale model, allowed the EFFPI sensor to be developed before
incorporation with the FBG system into a Bulldog aerobatic light aircraft. The aircraft was
modified and certified based on Certification Standards 23 (CS-23) and flight tested with
steady and dynamic manoeuvres. Aerobatic dynamic manoeuvres were performed in flight
including a spin over a g-range −1g to +4g and demonstrated both the FBG and the EFFPI
instruments to have sufficient resolution to analyse the wing strain and fuselage unsteady
pressure characteristics. The steady manoeuvres from the EFFPI sensor matched the wind
tunnel data to within experimental error while comparisons of the flight test and wind tunnel
EFFPI results with a Kulite pressure sensor showed significant discrepancies between the two
sets of data, greater than experimental error. This issue is discussed further in the paper
Recommended from our members
Role for polo-like kinase 4 in mediation of cytokinesis.
The mitotic protein polo-like kinase 4 (PLK4) plays a critical role in centrosome duplication for cell division. By using immunofluorescence, we confirm that PLK4 is localized to centrosomes. In addition, we find that phospho-PLK4 (pPLK4) is cleaved and distributed to kinetochores (metaphase and anaphase), spindle midzone/cleavage furrow (anaphase and telophase), and midbody (cytokinesis) during cell division in immortalized epithelial cells as well as breast, ovarian, and colorectal cancer cells. The distribution of pPLK4 midzone/cleavage furrow and midbody positions pPLK4 to play a functional role in cytokinesis. Indeed, we found that inhibition of PLK4 kinase activity with a small-molecule inhibitor, CFI-400945, prevents translocation to the spindle midzone/cleavage furrow and prevents cellular abscission, leading to the generation of cells with polyploidy, increased numbers of duplicated centrosomes, and vulnerability to anaphase or mitotic catastrophe. The regulatory role of PLK4 in cytokinesis makes it a potential target for therapeutic intervention in appropriately selected cancers
Formation of submarine lava channel textures : insights from laboratory simulations
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B03104, doi:10.1029/2005JB003796.Laboratory simulations using polyethylene glycol (PEG) extruded at a constant rate and temperature into a tank with a uniform basal slope and filled with a cold sucrose solution generate channels that are defined by stationary levees and mobile flow interiors. These laboratory channels consistently display the following surface textures in the channel: smooth, folded, lineated, and chaotic. In the simulations, we can observe specific local conditions including flow rate, position within the channel, and time that combine to develop each texture. The textures in PEG flows form due to relative differences in shear forces between the PEG crust and the underlying liquid wax. Minimal shear forces form smooth crust, whereas folded crust forms when the shear is sufficiently high to cause ductile deformation. Brittle deformation of solid PEG creates a chaotic texture, and lineated crust results from shear forces along the channel-levee margin. We observe similar textures in submarine lava channels with sources at or near the Axial Summit Trough of the East Pacific Rise between 9° and 10°N. We mapped the surface textures of nine submarine lava channels using high-resolution digital images collected during camera tows. These textural maps, along with observations of the formation of similar features in analog flows, reveal important information about the mechanisms occurring across the channel during emplacement, including relative flow velocity and shear stress.The cruise was funded by a grant to WHOI from the
National Science Foundation (NSF) OCE-9819261, with additional funding
provided by WHOI thorough the Vetlesen Foundation. The PEG experiments
were funded by NSF OCE-0425073 in a grant to Tracy Gregg
Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training
Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function
- …