48,105 research outputs found
Gravitational instantons and internal dimensions
We Study instanton solutions in general relativity with a scalar field. The
metric ansatz we use is composed of a particular warp product of general
Einstein metrics, such as those found in a number of cosmological settings,
including string cosmology, supergravity compactifications and general Kaluza
Klein reductions. Using the Hartle-Hawking prescription the instantons we
obtain determine whether metrics involving extra compact dimensions of this
type are favoured as initial conditions for the universe. Specifically, we find
that these product metric instantons, viewed as constrained instantons, do have
a local minima in the action. These minima are then compared with the higher
dimensional version of the Hawking-Turok instantons, and we argue that the
latter always have lower action than those associated with these product
metrics.Comment: 10 pages, 5 figure
Hydrogen environment embrittlement of astroloy and Udimet 700 (nickel-base) and V-57 (iron-base) superalloys
The sensitivity to hydrogen environment embrittlement of three superalloys was determined. Astroloy forgings were resistant to embrittlement during smooth tensile, notched tensile, and creep testing in 3.5-MN/sq m hydrogen over the range 23 to 760 C. The notched tensile strength of Udimet 700 bar stock in hydrogen at 23 C was only 50 percent of the baseline value in helium. Forgings of V-57 were not significantly embrittled by hydrogen during smooth tensile testing over the range 23 to 675 C; creep and rupture lives of V-57 were degraded by hydrogen. Postcreep tensile ductility of V-57 was reduced by 40 percent after creep exposure in hydrogen
Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions
In the absence of inertia, a reciprocal swimmer achieves no net motion in a
viscous Newtonian fluid. Here, we investigate the ability of a reciprocally
actuated particle to translate through a complex fluid that possesses a network
using tracking methods and birefringence imaging. A geometrically polar
particle, a rod with a bead on one end, is reciprocally rotated using magnetic
fields. The particle is immersed in a wormlike micellar (WLM) solution that is
known to be susceptible to the formation of shear bands and other localized
structures due to shear-induced remodeling of its microstructure. Results show
that the nonlinearities present in this WLM solution break time-reversal
symmetry under certain conditions, and enable propulsion of an artificial
"swimmer." We find three regimes dependent on the Deborah number (De): net
motion towards the bead-end of the particle at low De, net motion towards the
rod-end of the particle at intermediate De, and no appreciable propulsion at
high De. At low De, where the particle time-scale is longer then the fluid
relaxation time, we believe that propulsion is caused by an imbalance in the
fluid first normal stress differences between the two ends of the particle
(bead and rod). At De~1, however, we observe the emergence of a region of
network anisotropy near the rod using birefringence imaging. This anisotropy
suggests alignment of the micellar network, which is "locked in" due to the
shorter time-scale of the particle relative to the fluid
Subroutines GEORGE and DRASTC simplify operation of automatic digital plotter
FORTRAN language subroutines enable the production of a tape for a 360-30 tape unit that controls the CALCOMP 566 Digital Incremental Plotter. This provides the plotter with instructions for graphically displaying data points with the proper scaling of axes, numbering, lettering, and tic marking
Boiler for generating high quality vapor
Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets
Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations
High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends
Beyond recurrent costs: an institutional analysis of the unsustainability of donor-supported reforms in agricultural extension
International donors have spent billions of dollars over the past four decades in developing and/or reforming the agricultural extension service delivery arrangements in developing countries. However, many of these reforms, supported through short-term projects, became unsustainable once aid funding had ceased. The unavailability of recurrent funding has predominantly been highlighted in the literature as the key reason for this undesirable outcome, while little has been written about institutional factors. The purpose of this article is to examine the usefulness of taking an institutional perspective in explaining the unsustainability of donor-supported extension reforms and derive lessons for improvement. Using a framework drawn from the school of institutionalism in a Bangladeshi case study, we have found that a reform becomes unsustainable because of poor demands for extension information and advice; missing, weak, incongruent, and perverse institutional frameworks governing the exchange of extension goods (services); and a lack of institutional learning and change during the reform process. Accordingly, we have argued that strategies for sustainable extension reforms should move beyond financial considerations and include such measures as making extension goods (services) more tangible and monetary in nature, commissioning in-depth studies to learn about local institutions, crafting new institutions and/or reforming the weak and perverse institutions prevailing in developing countries. We emphasize the need to address three categories of institutions – regulative, normative, and cultural-cognitive – and call for an alignment among them. We further argue that, in order to be sustainable, a reform should take a systemic approach in institutional capacity building and, for this to be possible, adopt a long-term program approach, as opposed to a short-term project approach
Introduction to Silicon Compilation
Inexorable progress in device scaling has given rise
to obvious increases in circuit complexity. There
is the conjecture that the level of complexity in hardware designs is akin to the level of complexity associated with large software systems. If this is the case, then it follows that the design methods and expertise of systems analysts could be brought
to bear on the complexity problems associated with
large designs in silicon. Already there is evidence that
structured hardware design, analogous to structured programming, is emerging in design philosophies
that emphasize wiring management and hierarchical design
development with regular structures [1]. However, if the expertise of the personnel in the software world
is to be applied to silicon implementations of systems
then there must be mechanisms that allow their participation in the design process. This could most effectively be achieved by allowing them to write programs which, when compiled, yield code that produces manufacturing data for silicon parts. Thus, taking a macroscopic view, there is a need to provide design tools that take
a completely textual description of a design and translate it to layout data
The political economy of the Jospin government
This article explores the political economy of the French Socialist Party (PS), beginning with the neo-liberal U-turn of 1983. It then charts the re-evaluation of the PS's political economic foundations after the 1993 defeat, the rejection of the neo-liberal 'pensée unique', and the rehabilitation of a broadly Keynesian frame of reference. The article goes on to explore how this shift has fed through into the Jospin government's policy and positions at both the national and international level. It explores aspirations to reinvent the EU as a Keynesian social democratic 'policy space', and at the national level, employment, macroeconomic, and structural policies
- …