75,755 research outputs found
An assessment of the newest magnetar-SNR associations
Anomalous X-ray Pulsars and Soft-Gamma Repeaters groups are magnetar
candidates featuring low characteristic ages ().
At least some of them they should still be associated with the remnants of the
explosive events in which they were born, giving clues to the type of events
leading to their birth and the physics behind the apparent high value of the
magnetar magnetic fields. To explain the high values of , a self-consistent
picture of field growth also suggests that energy injection into the SNR is
large and unavoidable, in contrast with the evolution of {\it conventional}
SNR. This modified dynamics, in turn, has important implications for the
proposed associations. We show that this scenario yields low ages for the new
candidates CXOU J171405.7-381031/CTB 37B and XMMU J173203.3-344518/G353.6-0.7,
and predicted values agree with recently found , giving support to
the overall picture.Comment: Contributed talk to the ASTRONS 2010 Conference, Cesme, Turkey, Aug.
2-6 201
Clustering and gelation of hard spheres induced by the Pickering effect
A mixture of hard-sphere particles and model emulsion droplets is studied
with a Brownian dynamics simulation. We find that the addition of nonwetting
emulsion droplets to a suspension of pure hard spheres can lead to both
gas-liquid and fluid-solid phase separations. Furthermore, we find a stable
fluid of hard-sphere clusters. The stability is due to the saturation of the
attraction that occurs when the surface of the droplets is completely covered
with colloidal particles. At larger emulsion droplet densities a percolation
transition is observed. The resulting networks of colloidal particles show
dynamical and mechanical properties typical of a colloidal gel. The results of
the model are in good qualitative agreement with recent experimental findings
[E. Koos and N. Willenbacher, Science 331, 897 (2011)] in a mixture of
colloidal particles and two immiscible fluids.Comment: 5 figures, 5 page
Cosmic string loops and large-scale structure
We investigate the contribution made by small loops from a cosmic string
network as seeds for large-scale structure formation. We show that cosmic
string loops are highly correlated with the long-string network on large scales
and therefore contribute significantly to the power spectrum of density
perturbations if the average loop lifetime is comparable to or above one Hubble
time. This effect further improves the large-scale bias problem previously
identified in earlier studies of cosmic string models.Comment: 5 pages, 5 figure
Evolution: Complexity, uncertainty and innovation
Complexity science provides a general mathematical basis for evolutionary thinking. It makes us face the inherent, irreducible nature of uncertainty and the limits to knowledge and prediction. Complex, evolutionary systems work on the basis of on-going, continuous internal processes of exploration, experimentation and innovation at their underlying levels. This is acted upon by the level above, leading to a selection process on the lower levels and a probing of the stability of the level above. This could either be an organizational level above, or the potential market place. Models aimed at predicting system behaviour therefore consist of assumptions of constraints on the micro-level – and because of inertia or conformity may be approximately true for some unspecified time. However, systems without strong mechanisms of repression and conformity will evolve, innovate and change, creating new emergent structures, capabilities and characteristics. Systems with no individual freedom at their lower levels will have predictable behaviour in the short term – but will not survive in the long term. Creative, innovative, evolving systems, on the other hand, will more probably survive over longer times, but will not have predictable characteristics or behaviour. These minimal mechanisms are all that are required to explain (though not predict) the co-evolutionary processes occurring in markets, organizations, and indeed in emergent, evolutionary communities of practice. Some examples will be presented briefly
Spiral structure of M51: Streaming motions across the spiral arms
The atomic hydrogen (HI) and the H alpha emission line in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the Taurus Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity gradients are detected in the H alpha emission after subtraction of the axi-symmetric component of the velocity field. The shift is positive on the inside and negative on the outside of the northern arm. Across the southern arm this situation is reversed. The direction of the shifts is such that the material is moving inward and faster compared to circular rotation in both arms, consistent with the velocity perturbations predicted by spiral density wave models for gas downstream of a spiral shock. The observed shifts amount to 20 to 30 km (s-1), corresponding to streaming motions of 60 to 90 km (s-1) in the plane of the disk (inclination angle 20 degrees). Comparable velocity gradients have also been observed by Vogel et al. in the CO emission from the inner northern arm of M51. The streaming motions in M51 are about 2 to 3 times as large as the ones found in HI by Rots in M81, and successfully modelled by Visser with a self-consistent density wave model. Researchers have not been able to detect conclusively streaming motions in the HI emission from the arms, perhaps due to the relatively poor angular resolution (approx. 15 seconds) of the HI observations
Non-equilibrium dynamics of an active colloidal "chucker"
We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal
particle which emits smaller solute particles from its surface, isotropically
and at a constant rate k_c. We find that the diffusion constant of the chucker
increases for small k_c, as recently predicted theoretically. At large k_c the
chucker diffuses more slowly due to crowding effects. We compare our simulation
results to those of a "point particle" Langevin dynamics scheme in which the
solute concentration field is calculated analytically, and in which
hydrodynamic effects can be included albeit in an approximate way. By
simulating the dragging of a chucker, we obtain an estimate of its apparent
mobility coefficient which violates the fluctuation-dissipation theorem. We
also characterise the probability density profile for a chucker which sediments
onto a surface which either repels or absorbs the solute particles, and find
that the steady state distributions are very different in the two cases. Our
simulations are inspired by the biological example of
exopolysaccharide-producing bacteria, as well as by recent experimental,
simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment
Large scale dissociation of molecular gas in the sprial arms of M51
The distribution of the atomic and ionized hydrogen along the inner spiral arms of M51 are compared. As is the case in M83, the location of both these phases of the interstellar medium with respect to the major dust lanes suggests that molecular hydrogen is dissociated on kpc scales in active star-forming regions, and that this dissociation process may strongly affect the observed morphology of atomic hydrogen in spiral arms
Transient cavities and the excess chemical potentials of hard-spheroid solutes in dipolar hard sphere solvents
Monte Carlo computer simulations are used to study transient cavities and the
solvation of hard-spheroid solutes in dipolar hard sphere solvents. The
probability distribution of spheroidal cavities in the solvent is shown to be
well described by a Gaussian function, and the variations of fit parameters
with cavity elongation and solvent properties are analyzed. The excess chemical
potentials of hard-spheroid solutes with aspect ratios in the range , and with volumes between one and twenty times that of a solvent
molecule, are presented. It is shown that for a given molecular volume and
solvent dipole moment (or temperature) a spherical solute has the lowest excess
chemical potential and hence the highest solubility, while a prolate solute
with aspect ratio should be more soluble than an oblate solute with aspect
ratio . For a given solute molecule, the excess chemical potential
increases with increasing temperature; this same trend is observed in the case
of hydrophobic solvation. To help interpret the simulation results, comparison
is made with a scaled-particle theory that requires prior knowledge of a
solute-solvent interfacial tension and the pure-solvent equation of state,
which parameters are obtained from simulation results for spherical solutes.
The theory shows excellent agreement with simulation results over the whole
range of solute elongations considered.Comment: 10 pages, 10 figure
- …