7,868 research outputs found

    Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches

    Get PDF
    Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-

    Hyperfine-mediated gate-driven electron spin resonance

    Full text link
    An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated experimentally and theoretically. The magnetic field dependence and absence of associated Rabi oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference between dots, allowing electrons in either dot to be addressed selectively.Comment: related papers available at http://marcuslab.harvard.ed

    Asymmetry of Nonlinear Transport and Electron Interactions in Quantum Dots

    Full text link
    The symmetry properties of transport beyond the linear regime in chaotic quantum dots are investigated experimentally. A component of differential conductance that is antisymmetric in both applied source-drain bias V and magnetic field B, absent in linear transport, is found to exhibit mesoscopic fluctuations around a zero average. Typical values of this component allow a measurement of the electron interaction strength.Comment: related papers at http://marcuslab.harvard.ed

    Conditional operation of a spin qubit

    Full text link
    We report coherent operation of a singlet-triplet qubit controlled by the arrangement of two electrons in an adjacent double quantum dot. The system we investigate consists of two pairs of capacitively coupled double quantum dots fabricated by electrostatic gates on the surface of a GaAs heterostructure. We extract the strength of the capacitive coupling between qubit and double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways to multi-qubit control and implementation of quantum algorithms with spin qubits.Comment: related papers here: http://marcuslab.harvard.ed

    Critical and Tricritical Points for the Massless 2d Gross-Neveu Model Beyond Large N

    Get PDF
    Using optimized perturbation theory, we evaluate the effective potential for the massless two dimensional Gross-Neveu model at finite temperature and density containing corrections beyond the leading large-N contribution. For large-N, our results exactly reproduce the well known 1/N leading order results for the critical temperature, chemical potential and tricritical points. For finite N, our critical values are smaller than the ones predicted by the large-N approximation and seem to observe Landau's theorem for phase transitions in one space dimension. New analytical results are presented for the tricritical points that include 1/N corrections. The easiness with which the calculations and renormalization are carried out allied to the seemingly convergent optimized results displayed, in this particular application, show the robustness of this method and allows us to obtain neat analytical expressions for the critical as well as tricritical values beyond the results currently known.Comment: 29 pages, 14 figure

    Polymers in Curved Boxes

    Full text link
    We apply results derived in other contexts for the spectrum of the Laplace operator in curved geometries to the study of an ideal polymer chain confined to a spherical annulus in arbitrary space dimension D and conclude that the free energy compared to its value for an uncurved box of the same thickness and volume, is lower when D<3D < 3, stays the same when D=3D = 3, and is higher when \mbox{D>3D > 3}. Thus confining an ideal polymer chain to a cylindrical shell, lowers the effective bending elasticity of the walls, and might induce spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned results show that {\em {any}} shell in D=3D = 3 induces this effect, except for a spherical shell). We compute the contribution of this effect to the bending rigidities in the Helfrich free energy expression.Comment: 20 pages RevTeX, epsf; 4 figures; submitted to Macromoledule

    Descriptional Complexity of Formal Systems

    Get PDF
    We investigate certain word-construction games with variable turn orders. In these games, Alice and Bob take turns on choosing consecutive letters of a word of fixed length, with Alice winning if the result lies in a predetermined target language. The turn orders that result in a win for Alice form a binary language that is regular whenever the target language is, and we prove some upper and lower bounds for its state complexity based on that of the target language</p

    Exact 1/N and Optimized Perturbative Evaluation of mu_c for Homogeneous Interacting Bose Gases

    Full text link
    In the framework of the O(N) three-dimensional effective scalar field model for homogeneous dilute weakly interacting Bose gases we use the 1/N expansion to evaluate, within the large N limit, the parameter r_c which is directly related to the critical chemical potential mu_c. This quantity enters the order-a^2 n^{2/3} coefficient contributing to the critical temperature shift Delta T_c where a represents the s-wave scattering length and n represents the density. Compared to the recent precise numerical lattice simulation results, our calculation suggests that the large N approximation performs rather well even for the physical case N=2. We then calculate the same quantity but using different forms of the optimized perturbative (variational) method, showing that these produce excellent results both for the finite N and large-N cases.Comment: 12 pages, 2 figures. We have performed a refined and extended numerical analysis to take into account the very recent results of Ref. [15
    corecore