54 research outputs found

    Localized linear polynomial operators and quadrature formulas on the sphere

    Full text link
    The purpose of this paper is to construct universal, auto--adaptive, localized, linear, polynomial (-valued) operators based on scattered data on the (hyper--)sphere \SS^q (q≄2q\ge 2). The approximation and localization properties of our operators are studied theoretically in deterministic as well as probabilistic settings. Numerical experiments are presented to demonstrate their superiority over traditional least squares and discrete Fourier projection polynomial approximations. An essential ingredient in our construction is the construction of quadrature formulas based on scattered data, exact for integrating spherical polynomials of (moderately) high degree. Our formulas are based on scattered sites; i.e., in contrast to such well known formulas as Driscoll--Healy formulas, we need not choose the location of the sites in any particular manner. While the previous attempts to construct such formulas have yielded formulas exact for spherical polynomials of degree at most 18, we are able to construct formulas exact for spherical polynomials of degree 178.Comment: 24 pages 2 figures, accepted for publication in SIAM J. Numer. Ana

    Travelling waves for the Gross-Pitaevskii equation II

    Full text link
    The purpose of this paper is to provide a rigorous mathematical proof of the existence of travelling wave solutions to the Gross-Pitaevskii equation in dimensions two and three. Our arguments, based on minimization under constraints, yield a full branch of solutions, and extend earlier results, where only a part of the branch was built. In dimension three, we also show that there are no travelling wave solutions of small energy.Comment: Final version accepted for publication in Communications in Mathematical Physics with a few minor corrections and added remark

    SimRank*: effective and scalable pairwise similarity search based on graph topology

    Get PDF
    Given a graph, how can we quantify similarity between two nodes in an effective and scalable way? SimRank is an attractive measure of pairwise similarity based on graph topologies. Its underpinning philosophy that “two nodes are similar if they are pointed to (have incoming edges) from similar nodes” can be regarded as an aggregation of similarities based on incoming paths. Despite its popularity in various applications (e.g., web search and social networks), SimRank has an undesirable trait, i.e., “zero-similarity”: it accommodates only the paths of equal length from a common “center” node, whereas a large portion of other paths are fully ignored. In this paper, we propose an effective and scalable similarity model, SimRank*, to remedy this problem. (1) We first provide a sufficient and necessary condition of the “zero-similarity” problem that exists in Jeh and Widom’s SimRank model, Li et al. ’s SimRank model, Random Walk with Restart (RWR), and ASCOS++. (2) We next present our treatment, SimRank*, which can resolve this issue while inheriting the merit of the simple SimRank philosophy. (3) We reduce the series form of SimRank* to a closed form, which looks simpler than SimRank but which enriches semantics without suffering from increased computational overhead. This leads to an iterative form of SimRank*, which requires O(Knm) time and O(n2) memory for computing all (n2) pairs of similarities on a graph of n nodes and m edges for K iterations. (4) To improve the computational time of SimRank* further, we leverage a novel clustering strategy via edge concentration. Due to its NP-hardness, we devise an efficient heuristic to speed up all-pairs SimRank* computation to O(Knm~) time, where m~ is generally much smaller than m. (5) To scale SimRank* on billion-edge graphs, we propose two memory-efficient single-source algorithms, i.e., ss-gSR* for geometric SimRank*, and ss-eSR* for exponential SimRank*, which can retrieve similarities between all n nodes and a given query on an as-needed basis. This significantly reduces the O(n2) memory of all-pairs search to either O(Kn+m~) for geometric SimRank*, or O(n+m~) for exponential SimRank*, without any loss of accuracy, where m~â‰Șn2 . (6) We also compare SimRank* with another remedy of SimRank that adds self-loops on each node and demonstrate that SimRank* is more effective. (7) Using real and synthetic datasets, we empirically verify the richer semantics of SimRank*, and validate its high computational efficiency and scalability on large graphs with billions of edges

    Approximation on the sphere-a survey

    No full text
    • 

    corecore