
The VLDB Journal
https://doi.org/10.1007/s00778-018-0536-3

REGULAR PAPER

SimRank*: effective and scalable pairwise similarity search based on
graph topology

Weiren Yu1 · Xuemin Lin2 ·Wenjie Zhang2 · Jian Pei3 · Julie A. McCann4

Received: 25 March 2018 / Revised: 15 December 2018 / Accepted: 18 December 2018
© The Author(s) 2019

Abstract
Given a graph, how can we quantify similarity between two nodes in an effective and scalable way? SimRank is an attractive
measure of pairwise similarity based on graph topologies. Its underpinning philosophy that “two nodes are similar if they are
pointed to (have incoming edges) from similar nodes” can be regarded as an aggregation of similarities based on incoming
paths. Despite its popularity in various applications (e.g., web search and social networks), SimRank has an undesirable
trait, i.e., “zero-similarity”: it accommodates only the paths of equal length from a common “center” node, whereas a large
portion of other paths are fully ignored. In this paper, we propose an effective and scalable similarity model, SimRank*, to
remedy this problem. (1) We first provide a sufficient and necessary condition of the “zero-similarity” problem that exists
in Jeh and Widom’s SimRank model, Li et al.’s SimRank model, Random Walk with Restart (RWR), and ASCOS++. (2)
We next present our treatment, SimRank*, which can resolve this issue while inheriting the merit of the simple SimRank
philosophy. (3) We reduce the series form of SimRank* to a closed form, which looks simpler than SimRank but which
enriches semantics without suffering from increased computational overhead. This leads to an iterative form of SimRank*,
which requires O(K nm) time and O(n2) memory for computing all (n2) pairs of similarities on a graph of n nodes and m
edges for K iterations. (4) To improve the computational time of SimRank* further, we leverage a novel clustering strategy
via edge concentration. Due to its NP-hardness, we devise an efficient heuristic to speed up all-pairs SimRank* computation
to O(K nm̃) time, where m̃ is generally much smaller than m. (5) To scale SimRank* on billion-edge graphs, we propose two
memory-efficient single-source algorithms, i.e., ss-gSR* for geometric SimRank*, and ss-eSR* for exponential SimRank*,
which can retrieve similarities between all n nodes and a given query on an as-needed basis. This significantly reduces the
O(n2) memory of all-pairs search to either O(K n + m̃) for geometric SimRank*, or O(n + m̃) for exponential SimRank*,
without any loss of accuracy, where m̃ � n2. (6) We also compare SimRank* with another remedy of SimRank that adds
self-loops on each node and demonstrate that SimRank* ismore effective. (7) Using real and synthetic datasets, we empirically
verify the richer semantics of SimRank*, and validate its high computational efficiency and scalability on large graphs with
billions of edges.

Keywords Similarity search · Link analysis · Graph topology · SimRank measure

B Weiren Yu
w.yu3@aston.ac.uk

Xuemin Lin
lxue@cse.unsw.edu.au

Wenjie Zhang
zhangw@cse.unsw.edu.au

Jian Pei
jpei@cs.sfu.ca

Julie A. McCann
j.mccann@imperial.ac.uk

1 Introduction

The task of assessing similarity between two nodes based
on graph topology is a long-standing problem in hyperlink

1 School of Engineering and Applied Science, Aston
University, Birmingham, UK

2 School of Computer Science and Engineering, University of
New South Wales, Sydney, Australia

3 School of Computing Science, Simon Fraser University,
Vancouver, Canada

4 Department of Computing, Imperial College, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0536-3&domain=pdf

W. Yu et al.

c

e

b

d

i

h

g
a

f

query=f Pairs JSR LSR PR RWR ASCOS SR*
(a, f) 0 0 0.1544 0 0 0.036
(b, f) 0 0 0 0 0 0.1524
(c, f) 0.39 0.228 0.1931 0.048 0.09 0.0639
(d, f) 0 0 0 0.24 0.3 0.0973
(e, f) 0 0 0 0 0 0.0324
(f, f) 1 0.784 1 0.4 1 0.4914
(g, f) 0.39 0.228 0.1931 0.048 0.09 0.0639
(h, f) 0.36 0.144 0.1119 0 0 0.0194
(i, f) 0.38 0.2 0.1661 0.048 0.06 0.0491

Fig. 1 A “zero-similarity” problem on a citation graph when similari-
ties {s(�, f)} w.r.t. query f are assessed

analysis. This type of similarity, also known as link-based
similarity, is one of the fundamental primitives in a broad
range of applications, e.g., recommendation systems [1], web
page ranking [14], spam detection [2], citation analysis [37],
and graph clustering [38]. Indeed, link-based similarity relies
on graph structures to assess relevance between two nodes,
in contrast to text-based similarity that hinges on the text
content of the Web. However, it is a complex challenge to
find an effective and scalable link-based similarity model
since a desirable similarity measure should not only better
simulate human judgement behavior based on simple and
elegant formulations [24], but also scale well on large graphs.

Recently, SimRank [12] has received growing interest as a
widely-acceptedmeasure of pairwise similarity. The triumph
of SimRank is largely due to its succinct yet elegant idea that
“two nodes are assessed as similar if they are pointed to by
similar nodes”, together with the base case that “each node
is most similar to itself”. SimRank was first proposed by
Jeh and Widom [12], and has gained tremendous popular-
ity in many vibrant communities, e.g., collaborative filtering
[1], social network analysis [37], and k-nearest neighbor
search [17]. Since then, there has also been some studies
[10,11,19,33] focusing on Li et al.’s SimRank model [19], a
variant of Jeh andWidom’smodel. The recent studies [16,34]
show the difference between these two SimRank models:
In Jeh and Widom’s model [12], the SimRank similarity
of each node with itself is always 1, whereas in Li et al.’s
model [19] there is no such a restriction. However, due to the
self-referentiality, both SimRank models suffer from high
computational overhead.

While significant efforts have been devoted to optimiz-
ing computation of both SimRank models [9–11,16,19,24,
26,27,32,33], semantic issues of SimRank have attracted lit-
tle attention. We observe that both SimRank models have an
undesirable property (we call it “zero-similarity”): SimRank
score s(i, j) only accommodates the paths of equal length
from a common “source” node to both i and j , but other paths
for node-pair (i, j) are fully ignored by SimRank, as shown
in Example 1.

Example 1 Consider a citation network G in Fig. 1, where
each node is a paper, and an edge is a citation. Given damping
factor C = 0.6, query node f , and the number of itera-

tions K = 20, we assess all SimRank similarities {s(�, f)}
w.r.t. query f in G, using both Jeh and Widom’s model [12]
andLi et al.’smodel [19], whose results are shown in columns
JSR and LSR, respectively.We notice that, regardless ofwhich
SimRankmodel is used, many node-pairs inG have zero sim-
ilarities when they have no incoming paths with equal length
from a common “source” node. For instance, s(e, f) = 0
since the in-link “source” a is not in the center of the path
e ← a → b → f . This means that when we recursively
compute the pairwise in-neighborhood similarities of two
nodes, there is no likelihood for this recursion to reach the
base case (i.e., a common in-link “source”) that a node is
maximally similar to itself. Similarly, s(a, f) = 0 since a
has no in-neighbors, not to mention the fact that there is no
such a common in-link “source” with equal distance to both
a and f . In contrast, s(c, f) > 0 since there is a common
in-link “source” b in the center of the path c← b → f . ��

The “zero-SimRank” phenomenon in Example 1 is rather
counter-intuitive, e.g., s(e, f) = 0. We note from Fig. 1 that
e and f do have a common in-link “source” a, just except
for the equal-length distance from a to both e and f . Hence,
e and f should have some relevance. Another example is a
path graph of length 2n:

a−n ← · · · ← a−1← a0 → a1→ · · · → an,

where each ai (i = 0,±1, . . . ,±n) denotes a node. We
notice that SimRank score s(ai , a j) = 0, for all |i | �= | j |,
which is quite against intuition since a0 is the common root
of all nodes ai (i = ±1, . . . ,±n).

It is important to notice that the “zero-similarity” issue
refers to not only the problem that SimRank may produce
“complete zero scores” (i.e., “completely dissimilar” issue),
but also the problem that SimRank will neglect the con-
tributions of a large class of in-link paths whose “source”
node is not in the center (even though their similarity scores
are not zero) due to the “zero contributions” of such paths
to SimRank scores (i.e., “partially missing” issue). Indeed,
as demonstrated by our experiments in Fig. 6b, both issues
of “zero-similarity” commonly exist in real graphs, e.g., on
CitH, ∼ 97.9% node-pairs have “zero-SimRank” issues,
among which∼ 19.2% are evaluated to be “completely dis-
similar”, and∼ 78.7%(thoughSimRank �=0) to be “partially
missing” the contributions of many in-link paths. These have
adversely affected assessment quality, which highlights our
need to enhance the existing SimRank model.

A pioneering piece of work by Zhao et al. [36] pro-
poses rudiments of a novel approach to refining the SimRank
model. Observing that SimRank may incur some unwanted
“zero similarities”, they suggested P-Rank, an extension of
SimRank, by taking both in- and out-links into consideration
for similarity assessment, as opposed to SimRank thatmerely

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

considers in-links. Although P-Rank, to some degree, might
reduce “zero-similarity” occurrences in practice, we argue
that such a “zero-similarity” issue arises, not because of a
biased overlook of SimRank against out-links, but because
of the blemish in SimRank philosophy thatmaymiss the con-
tribution of a certain kind of paths (whose in-link “source” is
not in the center). In other words, P-Rank cannot, in essence,
resolve the “zero-similarity” issue of SimRank. For instance,
nodes a and f are similar in the context of P-Rank, as shown
in column PR of Fig. 1, since there is an out-link “source” d
in the center of the outgoing path a → d ← f . However,
the P-Rank similarity of (e, f) is still zero, since (1) i is not
in the center of the outgoing path e → i ← d ← f , and
(2) there are no other outgoing paths between pair (e, f).

Our main goal in this work is to propose an effective and
scalable model that remedies the “zero-similarity” issue of
SimRank, while capturing merits of the original SimRank
philosophy. Keeping with an elegant form and supporting
scalability on large graphs, our model is intended to be
an enhancement of SimRank for semantic richness, and
takes into account contributions of many incoming paths
(whose common “source” is not strictly in the center) that
are neglected by SimRank. Amajor challengewith establish-
ing this model is that it is notoriously difficult to effectively
assess s(a, b) by finding out all the possible incoming paths
betweena and b, regardless ofwhether there exists a common
“source” with equal distance to both a and b. Fortunately, we
observe that our model can be reduced to a simple elegant
closed form, without suffering from high computational time
and memory space. Our proposed model can handle all-pairs
similarities query, and we are more interested in the single-
source query, i.e.,

Given a graph G, and a query node q in G
Retrieve all the similarities {s(�, q)}w.r.t. query q accord-

ing to our proposed similarity measure.

This type of query is practically useful when answering the
questions such as “who have close interactions with Diego
(query) in a social network?”, and “which papers are relevant
to this one (query) in a co-citation graph?”.

1.1 Main contributions

In this article, our main contributions are as follows:

– We first provide a sufficient and necessary condition of
the “zero-similarity” problem for the existing similarity
models, e.g., Jeh and Widom’s SimRank [12], Li et al.’s
SimRank [19], Random Walk with Restart (RWR) [28],
and ASCOS++ [7] (Sect. 3).

– We propose SimRank*, a semantic enhanced version
of SimRank, and explain its semantic richness. Our

model provides a way of traversing more incoming paths
that are largely ignored by SimRank, and thus enables
counter-intuitive “zero-SimRank” nodes to be similar
while inheriting the beauty of the SimRank philosophy
(Sect. 4).

– We convert the series form of SimRank* to a closed form,
which looks more succinct yet with richer semantics than
SimRank, without suffering from increased computa-
tional cost. This leads to an iterativemodel for computing
all-pairs SimRank* in O(K nm) time and O(n2) mem-
ory on a graph of n nodes and m edges for K iterations
(Sect. 5).

– To speed up SimRank* computation further, as the exist-
ing technique [24] of partial sums memoization for
SimRank optimization no longer applies, we leverage a
novel clustering approach via edge concentration. Due
to its NP-hardness, an efficient algorithm is devised to
speed up all-pairs SimRank* computation to O(K nm̃)

time, where m̃ is the number of edges in our compressed
graph, which is generally much smaller than m (Sect. 6).

– To scale SimRank*over billion-edge graphs,we also pro-
pose two memory-efficient single-source algorithms for
SimRank*, i.e., ss-gSR* for geometric SimRank*, and ss-
eSR* for exponential SimRank*, that require O(K 2m̃)

time and O(K m̃) time, respectively, to compute simi-
larities between all n nodes and a given query on an
as-needed basis. This significantly reduces the O(n2)

memory of all-pairs search to either O(K n + m̃) for
geometric SimRank*, or O(n+ m̃) for exponential Sim-
Rank*, without any compromise of accuracy, where
m̃ � n2 (Sect. 7).

– We also compare SimRank* with another alternative
remedy for SimRank that adds self-loops on each
node, and demonstrate that SimRank* is more effective
(Sect. 8).

– We evaluate the performance of SimRank* on real and
synthetic datasets. Empirical results show that (i) Sim-
Rank* achieves richer semantics than existing measures
(e.g., SimRank, P-Rank, and RWR); (ii) Our optimiza-
tion techniques for SimRank* are consistently faster than
the baselines by several times; (iii) SimRank* is scalable
on large graphs with billions of edges, without any com-
promise of accuracy; (iv) The impacts of the query size
and the number of iterations on the time andmemory per-
formance of SimRank* over large-scale graphs (Sect. 9).

This article is a substantial extension of our previous
work [31]. We have made the following new updates:

– In Sects. 3.2 and 3.5, we provide a sufficient and neces-
sary condition of the “zero-similarity” problem for Jeh
and Widom’s SimRank model [12] and ASCOS++ (a

123

W. Yu et al.

RWR-like model that appeared recently) [7]. In contrast,
the prior work [31] only focused on Li et al.’s SimRank
model [19]. However, recent studies [16,34] have pointed
out that these two SimRank models are different. Thus, it
is imperative to investigate if the similar “zero-similarity”
problem exists in Jeh and Widom’s SimRank model.
Moreover, in Sect. 3.3, we add Corollary 2 to show that
the positions of node-pairs with “zero-similarity” issues
in both SimRank models are exactly the same.

– In Sect. 7, we propose two memory-efficient SimRank*
single-source algorithms, ss-gSR* and ss-eSR*, that sup-
port on-demand computation of similarities between all
n nodes and a given query in O(K 2m̃) time and O(K m̃)

time, respectively. These algorithms also significantly
reduce the space of all-pairs SimRank* from O(n2) to
O(K n + m̃) for geometric SimRank* search, and to
O(n + m̃) for exponential SimRank* search, respec-
tively, without any sacrifice of accuracy. We also provide
the complexity bounds and correctness proofs of our
memory-efficient algorithms. This hasmade the previous
version of the SimRank* model in [31] highly scalable
to large graphs with billions of edges.

– In Sect. 8, we compare SimRank* with another alter-
native remedy of SimRank that adds self-loops on each
node. Our analysis demonstrate that SimRank* is more
effective than the straightforward treatment of adding
self-loops, since SimRank* does not repeatedly count
any incoming paths of different length when assessing
pairwise similarity.

– In Sects. 9.2.2 and 9.2.3–9.2.5, we conduct additional
experiments on a variety of large-scale datasets, includ-
ing (i) qualitative case studies of the rich semantics
of SimRank* for single-source queries on real labeled
datasets (DBLP and CitH); (ii) high scalability and
low computational cost in terms of time and space for
our memory-efficient SimRank* algorithms over billion-
edge graphs; (iii) exactness of ss-gSR* and ss-eSR* as
compared with the previous algorithms proposed in [31];
and (iv) impacts of the size of queries |Q| and the number
of iterations K on the time and memory of ss-gSR* and
ss-eSR* on large-scale datasets.

– In Sect. 10, we update related work by incorporating the
new research that has appeared recently.

2 Preliminaries

In this section, we revisit the background of SimRank. Pre-
vious studies on SimRank can be distinguished into two
categories, based on the SimRank model they used: (1) Jeh
and Widom’s model (e.g., [9,12,16,24,25,27]) and (2) Li
et al.’s model (e.g., [10,11,19,33,39]). Recent works [16,34]
have pointed out that two SimRank models are different.

Table 1 Symbols and description

Symbols Description

G Directed graph

G̃ Induced bipartite graph from graph G
Ĝ Compressed graph of G̃ via edge concentration

n Number of nodes in graph G
m Number of edges in graph G
m̃ Number of edges in compressed graph Ĝ
C Damping factor (0 < C < 1)

K Number of iterations

q Query node in graph G
eq n × 1 unit vector with a 1 in the q-th entry and 0s elsewhere

Q Backward transition matrix

S SimRank matrix

Ŝ/Ŝ′ Geometric/exponential SimRank* matrix

In n × n identity matrix

XT Transpose of matrix X

[X]i,� i-th row of matrix X

[X]�, j j-th column of matrix X

[X]i, j (i, j)-th entry of matrix X

Let us look at the component form and matrix form of each
SimRank model, respectively. Table 1 lists the notations fre-
quently used in the article.

2.1 Jeh andWidom’s SimRankmodel

Let G = (V, E) be a given graph with a set of nodes, V ,
and a set of edges, E . We denote by I(a) a set of all the
in-neighbors of a, and |I(a)| the cardinality of I(a).

Component form Jeh and Widom’s SimRank score between
nodes a and b, denoted as s(a, b), is defined as

(i) s(a, b) = 0, if I(a) = ∅ or I(b) = ∅;
(ii) otherwise,

s(a, b) =
⎧
⎨

⎩

1, a = b;
C

|I(a)||I(b)|
∑

j∈I(b)

∑

i∈I(a)

s(i, j), a �= b. (1)

where C ∈ (0, 1) is a damping factor.

Iterative form To iteratively solve s(a, b), Jeh and Widom
[12] carried out the following iterations:

(i) Start with s0(a, a) = 1 and s0(a, b) = 0 if a �= b.
(ii) For k = 0, 1, 2, . . ., iterate as indicated below:

(a) sk+1(a, b) = 0, if I (a) = ∅ or I (b) = ∅;

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

(b) otherwise,

sk+1(a, b) =
⎧
⎨

⎩

1, a = b;
C

|I(a)||I(b)|
∑

j∈I(b)

∑

i∈I(a)

sk(i, j), a �= b.

(2)

The resulting {sk(a, b)}∞k=0 converges to s(a, b).
Matrix form Recently, Kusumoto et al. [16] have provided
thematrix form for Jeh andWidom’s SimRankmodel, which
is equivalent to Eq. (1):

S = max{C · (Q · S ·QT), In}, (3)

where S is Jeh and Widom’s similarity matrix whose entry
[S]i, j is SimRank score s(i, j);Q is the backward transition
matrix with its entry [Q]i, j defined as

[Q]i, j =
{
1/|I(i)|, if ∃ edge (j → i) ∈ E;
0, otherwise.

QT is the matrix transpose of Q; max{·} is the element-wise
maximum operator; In is an n × n identity matrix.

2.2 Li et al.’s SimRankmodel

To differentiate Jeh and Widom’s SimRank matrix S, we use
SL to denote Li et al.’s SimRank matrix. The matrix form of
Li et al.’s SimRank model [19] is

SL = C · (Q · SL ·QT)+ (1− C) · In, (4)

It is worth noticing that the term (1 − C) · In in Eq. (4)
cannot guarantee that all diagonal values of SL are 1s, which
is different to Jeh and Widom’s model in Eq. (3).

Accordingly, Eq. (4) can be readily rewritten into the fol-
lowing component form:

(i) sL(a, b) = 0, if I(a) = ∅ or I(b) = ∅;
(ii) otherwise,

sL(a, b) = C
|I(a)||I(b)|

∑

j∈I(b)

∑

i∈I(a)

sL(i, j)+
{
1− C, a = b;
0, a �= b.

3 “Zero-similarity” problem

In this section,wewill provide a sufficient and necessary con-
dition of the “zero-similarity” problem for Jeh and Widom’s
SimRank [12], Li et al. ’s SimRank [19], RWR [28], and
ASCOS [7].

Before illustrating the existence of “zero-Similarity”
problems, let us first introduce the following notions.

Definition 1 (An In-Link Path) An in-link path ρ of node-pair
(a, b) in G is a walk of length (l1 + l2), denoted as

a = v0 ← v1 ← · · · ← vl1 → vl1+1 → · · · → vl1+l2 = b,

starting from node a, taking l1 steps against the directions of
the edges vi−1← vi for every i ∈ [1, l1], and l2 steps along
the directions of vi−1→ vi for every i ∈ [l1+1, l1+l2], and
finally arriving at node b. Here, node vl1 is called the in-link
“source” of ρ; and the length of in-link path ρ, denoted by
len(ρ), is (l1+ l2), i.e., the number of edges in ρ. We allow a
path from the “source” node to one end with repeated nodes
to suit the existence of cycles in a graph.

Definition 2 An in-link path ρ is called symmetric if l1 = l2.
ρ is called unidirectional if l1 = 0 or l2 = 0.

Example 2 Consider the graph G in Fig. 1, the path ρ : h ←
e ← a → d is an in-link path of node-pair (h, d), where
a is the in-link “source”. len(ρ) = 2 + 1 = 3. ρ is an
asymmetric in-link path as l1 = 2 �= 1 = l2. ��

Clearly, an in-link path ρ is symmetric if and only if there
exists an in-link “source” in the center of ρ. Thus, any in-link
path of odd length (i.e., l1 + l2 is odd) is asymmetric since
there do not exist two integers l1 and l2 s.t. l1 = l2 and l1+ l2
is odd.

3.1 Counting in-link paths

To count the number of the in-link paths in a graph G, we
extend the power property of an adjacency matrix.

Traditionally, let A be the adjacency matrix of G. There is
an interesting property ofAl [5]: The entry [Al]i, j counts the
number of paths of length l from node i to j . This property
can be generalized as follows:

Lemma 1 Let ρ be a generic path of length l that consists
of a sequence of nodes i = v0, v1, . . . , vl = j , where each
edge can be directed either a) from vk−1 to vk , or b) from vk

to vk−1. Let Ā =∏l
k=1Ak , where

Ak =
{
A, if ∃ an edge (vk−1→ vk) in ρ

AT, if ∃ an edge (vk−1← vk) in ρ
, for k ∈ [1, l]

Then, [Ā]i, j counts the number of generic paths ρ in G.

The proof of Lemma 1 is completed by induction on l,
which is similar to the proof of the power property of the
adjacency matrix [5, Page 51].

Intuitively, Lemma 1 counts the number of generic paths
whose edges are not always in the same direction. For
instance, consider a path ρ : i → ◦ ← ◦ → ◦ → ◦ ← j ,
where ◦ denotes an arbitrary node in a graph. We can con-
struct Ā = AATAAAT, whereA (resp.AT) is at the positions

123

W. Yu et al.

1, 3, 4 (resp. 2, 5), corresponding to the positions of →
(resp. ←) in ρ. Then, [Ā]i, j tallies the number of paths ρ

in the graph. If no such paths, [Ā]i, j = 0. As another exam-

ple, [(AT)
l1 · Al2]i, j tallies the number of in-link paths of

length (l1 + l2) for node-pair (i, j). As a special case when
all Ak (∀k ∈ [1, l]) are set to A, Lemma 1 reduces to the
conventional power property of an adjacency matrix.

An immediate consequence of Lemma 1 is as follows:

Corollary 1
∑∞

k=1 [(AT)
k · Ak]i, j counts the number of all

symmetric in-link paths of node-pair (i, j) in G.

Corollary 1 implies that if there are no nodes with equal
distance to both i and j (i.e., if no symmetric in-link paths
for node-pair (i, j)), then

[(AT)
k · Ak]i, j = 0, (∀k = 1, 2, . . .)

3.2 “Zero-similarity” issue in Jeh andWidom’s model

Based on the notions of symmetric in-link paths, we next
show why the “zero-similarity” issue exists in Jeh and
Widom’s model. Specifically, we show the following the-
orem:

Theorem 1 For any two distinct nodes a and b in G, Jeh and
Widom’s SimRank score s(a, b) will ignore all the contribu-
tions of asymmetric in-link paths for (a, b). As an extreme
case, s(a, b) = 0 if and only if there are no symmetric in-link
paths in G for node-pair (a, b).

Proof Let diag(X) be a matrix operator that returns a diago-
nal matrix whose diagonal entries are the same as the matrix
X. Then, Jeh andWidom’s SimRank Eq. (3) can be rewritten
as:

S = C · (Q · S ·QT)+ D (5)

where D = In − C · diag(Q · S ·QT) is a diagonal matrix.
It is important to notice that eachdiagonal element [D]i,i ∈

[1− C, 1]. This is because

[D]i,i = 1− C ·∑n
x=1

∑n
y=1 [Q]i,x · [S]x,y · [Q]i,y

Since 0 ≤ [S]x,y ≤ 1 and 0 ≤∑n
x=1 [Q]i,x ≤ 1, we have

[D]i,i ≥ 1− C ·∑n
x=1 [Q]i,x ·

∑n
y=1 [Q]i,y ≥ 1− C

According to Kusumoto et al. [16], Eq. (5) takes the fol-
lowing power series form:

S =∑∞l=0 Cl ·Ql · D · (QT)
l
,

whose component form is

[S]i, j =∑∞l=0 Cl · [Ql · D · (QT)
l]i, j (6)

We next show that [S]i, j �= 0 whenever there exists a
symmetric in-link path for node-pair (i, j).
(Sufficiency) We first prove that

“∃ a symmetric in-link path for (i, j) ⇒ [S]i, j �= 0”.
If there exists a symmetric in-link path for (i, j), then there

exists a node x0 in the center of this in-link path, such that the
symmetric in-link path can be divided into two unidirectional
paths of equal length l0:

i ← ◦← · · · ← ◦ ← x0︸ ︷︷ ︸
length l0

and x0 → ◦→ · · · → ◦ → j
︸ ︷︷ ︸

length l0

Thus, by Lemma 1, it follows that

[(AT)l0]i,x0 �= 0 and [Al0]x0, j �= 0

⇔ [Ql0]i,x0 > 0 and [(QT)l0]x0, j > 0

Since each term [Ql · D · (QT)
l]i, j (∀l) in Eq. (6) is

nonnegative, we have

[S]i, j ≥ Cl0 · [Ql0 · D · (QT)
l0]i, j

= Cl0 ·∑x,y[Ql0]i,x · [D]x,y · [(QT)
l0]y, j

≥ Cl0 · [Ql0]i,x0 · [D]x0,x0 · [(QT)
l0]x0, j

Since Cl0 > 0, [Ql0]i,x0 > 0, [(QT)l0]x0, j > 0, and
[D]x0,x0 ≥ 1− C > 0, it follows that [S]i, j > 0.
(Necessity) We next prove that

“[S]i, j �= 0 ⇒ ∃ a symmetric in-link path for (i, j)”.
If [S]i, j �= 0, then it follows from Eq. (6) that there exists

a term (l0-th term) s.t. [Ql0 · D · (QT)
l0]i, j > 0.

Since D is diagonal matrix, i.e., [D]x,y = 0 (x �= y), it
follows that

[Ql0 · D · (QT)
l0]i, j =∑x,y[Ql0]i,x · [D]x,y · [(QT)

l0]y, j

=∑z[Ql0]i,z · [D]z,z · [(QT)
l0]z, j

Thus,
∑

z[Ql0]i,z ·[D]z,z ·[(QT)
l0]z, j > 0. Since each element

of matrices Ql0 , D, and (QT)
l0 is nonnegative, there exists

one term (say, z0-th term) s.t.

[Ql0]i,z0 · [D]z0,z0 · [(QT)
l0]z0, j > 0 (7)

Since [D]z0,z0 ≥ 1− C > 0, Eq. (7) implies that

[Ql0]i,z0 · [(QT)
l0]z0, j > 0

(
⇔ [(AT)l0]i,z0 · [Al0]z0, j > 0

)

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

By Lemma 1, there exists a symmetric in-link path for
(i, j):

i ← ◦← · · · ← ◦ ←︸ ︷︷ ︸
length l0

z0→ ◦→ · · · → ◦ → j
︸ ︷︷ ︸

length l0
��

3.3 “Zero-similarity” issue in Li et al.’s SimRank

Apart from Jeh and Widom’s SimRank model, the “zero-
similarity” issue also exists in Li et al.’s SimRank model, as
indicated by the following theorem:

Theorem 2 For any two distinct nodes a and b inG, Li et al.’s
SimRank similarity sL(a, b) will also ignore the contribu-
tions of asymmetric in-link paths for (a, b). As an extreme
case, sL(a, b) = 0 whenever there are no symmetric in-link
paths in G for node-pair (a, b).

(Please see “Appendix A.1” for the proof of Theorem 2).
Theorems 1 and 2 provide a sufficient and necessary con-

dition of the “zero-similarity” problem for both SimRank
models. More interestingly, the proofs of these theorems
imply further that node-pairs with the “zero-similarity” prob-
lem in both models are the same:

Corollary 2 Let J and L be the sets of node-pairs with “zero
similarities” evaluated by Jeh and Widom’s SimRank model
and Li et al.’s SimRank model, respectively.

J � {(i, j) | [S]i, j = 0, ∀(i, j) ∈ V × V}
L � {(i, j) | [SL]i, j = 0, ∀(i, j) ∈ V × V}

Then, the following equality holds: J = L. ��
Proof From the proofs of Theorems 1 and 2, we know

[S]i, j �= 0 ⇔ ∃l0, s.t .
∑n

x=1 [Ql0]i,x · [D]x,x
︸ ︷︷ ︸

>0

·[Ql0] j,x �= 0

⇔ ∃l0, x0, s.t . [Ql0]i,x0 �= 0 and [Ql0] j,x0 �= 0

⇔ ∃l0, s.t .
∑n

x=1 [Ql0]i,x · [Ql0] j,x �= 0

⇔ [SL]i, j �= 0

Thus, J = L holds. ��

3.4 “Zero-similarity” issue in RWR

Other non-SimRank family models, e.g., RWR [28], also
imply a SimRank-like “zero-similarity” problem.

Theorem 3 For any two distinct nodes a and b in G, Random
Walk with Restart (RWR) similarity sR(a, b) will ignore the
contributions of non-unidirectional paths from b to a. As an
extreme case, sR(a, b) = 0 whenever there are no unidirec-
tional paths in G from b to a.

(Please see “Appendix A.2” for the proof of Theorem 3).
For example in Fig. 1, nodes e and f are assessed as dis-

similar byRWRas there are two different directions “←” and
“→” in the path e← a → b→ f . However, sR(c, f) �= 0

since there is a path c ← d ← f with one direction “←”
from f to c. Hence, both RWR and SimRank may encounter
“zero-similarity” issues.

3.5 “Zero-similarity” issue in ASCOS++

Recently, Chen and Giles [7] proposed a similarity model,
ASCOS++,1 to address the SimRank issue that “if the length
of a path between two nodes is an odd number, this path
makes no contribution to the SimRank score”. The issue is a
special case of our “zero-similarity” issue. More specifically,
[7] pointed out a sufficient condition for s(a, b) = 0,whereas
we give a sufficient and necessary condition for s(a, b) =
0. That is, “the odd-length path between two nodes a and
b” provided by [7] is not the only condition that will lead
to s(a, b) = 0. Another condition that “the even-length in-
linked paths between nodes a and b whose ‘source’ node is
not in the center of the path” will also result in s(a, b) =
0. Therefore, ASCOS++ only partially resolved our “zero-
similarity” issue of SimRank. To clarify this, let us look at
the ASCOS++ similarity matrix SA defined by [7]:

[SA]i, j =
{

C
|I(i)|

∑
x∈I(i) [SA]x, j , i �= j;

1, i = j .
(8)

The following theorem shows that ASCOS++ has a RWR-
like “zero-similarity” problem.

Theorem 4 For any two distinct nodes a and b in G,
ASCOS++ similarity sA(a, b) defined by Eq. (8) will ignore
the contributions of non-unidirectional paths from b to a.
As an extreme case, sA(a, b) = 0 whenever there are no
unidirectional paths in G from b to a.

Proof In matrix forms, Eq. (8) can be rewritten as:

SA = max{C ·Q · SA, In} = C ·Q · SA + D (9)

where D = In − diag(C ·Q · SA) is a diagonal matrix, and
Q is the row-normalized matrix of AT.

We rearrange the terms in Eq. (9) and obtain

SA = (In − C ·Q)−1 · D =∑∞k=0 Ck ·Qk · D,

whose component form is

[SA]i, j =∑∞k=0 Ck · [Qk]i, j · [D] j, j . (10)

1 ASCOS++ is an enhanced model of ASCOS that includes edge
weights into the measure.

123

W. Yu et al.

As 0 ≤ [SA]x,y ≤ 1 and 0 ≤∑n
x=1 [Q]i,x ≤ 1, we have

[D] j, j = 1− C ·∑n
x=1 [Q] j,x · [SA]x, j ≥ 1− C > 0 (∀ j)

In the following, we show that [SA]i, j �= 0whenever there
exists a unidirectional path from j to i .
(Sufficiency) We first prove that

“∃ a unidirectional path from j to i ⇒ [SA]i, j �= 0”.
If there exists a unidirectional path from j to i (its length is

denoted by l0), i.e., j → ◦→ · · · → ◦ → i
︸ ︷︷ ︸

length l0

, then it follows

from Lemma 1 that

[(AT)l0]i, j �= 0 ⇔ [Ql0]i, j > 0

because Q is the row-normalized matrix of AT.
As each term [Ql]i, j ≥ 0 (∀l,∀i,∀ j) in Eq. (10) and

[D] j, j ≥ 1− C > 0 (∀ j), we have

[SA]i, j ≥ Cl0
︸︷︷︸
>0

· [Ql0]i, j
︸ ︷︷ ︸

>0

· [D] j, j
︸ ︷︷ ︸

>0

> 0.

(Necessity) We next prove that
“[SR]i, j �= 0⇒ ∃ a unidirectional path from j to i”.
If [SA]i, j �= 0, then it follows from Eq. (10) that there

exists a term (l0-th term) s.t. [Ql0]i, j · [D] j, j > 0. Since
[D] j, j ≥ 1− C > 0 (∀ j), it follows that [Ql0]i, j > 0.

As Q is the row-normalized matrix of AT, we have

[Ql0]i, j > 0 ⇔ [(AT)l0]i, j > 0

By Lemma 1, there exists a unidirectional path of length l0
from j to i , i.e., j → ◦→ · · · → ◦ → i

︸ ︷︷ ︸
length l0

. ��

The proofs of Theorems 3 and 4 imply that node-pairs of
“zero similarities” in both RWR and ASCOS++ models are
the same. Indeed, by comparing their power series forms,
we notice that RWR and ASCOS++ are almost the same in
tallying unidirectional paths except weight assignment for
each path.

The probability that the extreme cases of the “zero-
similarity” problems for RWR and ASCOS++ stated in
Theorems 3 and 4 are often small in practice. This is
especially evident for undirected graphs because, for an
undirected graph, if the RWR (resp. ASCOS++) similarity
s(a, b) = 0, it means there are no connectivity between
nodes a and b, i.e., node a and b belong to two different
components of a graph. Therefore, the importance of Theo-
rems 3 and 4 is to highlight that, in non-extreme cases where
the RWR (resp. ASCOS++) similarity between two nodes is
not zero, there are still a number of non-unidirectional paths
that can be ignored by the RWR (resp. ASCOS++) model.

Fig. 2 In-link paths of (i, j) for length l ∈ [1, 4] captured by SimRank,
RWR, ASCOS++, and SimRank*

Summary In a nutshell, both Jeh andWidom’s SimRank [12]
and Li et al. ’s SimRank [19] only capture symmetric in-
link paths (whose “source” node is in the center), whereas
RWR [28] and ASCOS++ [7] only capture unidirectional
paths (whose “source” node is at the right end). All these
models have “zero-similarity” problems in digraphs, leading
to a biased way of assessing similarity.

4 SimRank*: a remedy for SimRank

4.1 Geometric series form of SimRank*

As SimRank (resp. RWR) loses asymmetric (resp. non-
unidirectional) in-link paths to assess node-pair s(i, j), our
treatment aims to compensate s(i, j) for such a loss, by
accommodating asymmetric (resp. non-unidirectional) in-

link paths. Precisely, we add the terms [Ql1 · (QT)
l2]i, j ,

∀l1 �= l2 (resp. ∀l1 �= 0), with appropriate weights, into
the series form of SimRank (resp. RWR) as follows:

Definition 3 Let Ŝ be a SimRank* similaritymatrix.The geo-
metric series form of SimRank* is defined as

Ŝ = (1− C) ·
∞∑

l=0

Cl

2l
·

l∑

α=0

(
l

α

)

·Qα · (QT)
l−α

. (11)

where
(l
α

)
� l!

α!(l−α)! denotes a binomial coefficient. ��
To see how the geometric form of SimRank* Eq. (11) is

derived and why it resolves the “zero-similarity” problems
for SimRank and RWR, we rewrite Eq. (11) as

[Ŝ]i, j = (1− C) ·
∞∑

l=0
Cl · [T̂l]i, j with

[T̂l]i, j = 1

2l
·

l∑

α=0

(
l

α

)

· [Qα · (QT)
l−α]i, j (∀i,∀ j)

(12)

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

To avoid ambiguity, in the following, we shall use Ŝ to
denote the exact (geometric) SimRank* in Eq. (11).

Comparing Eq. (12) with Li et al.’s SimRank

[S]i, j = (1− C) ·∑∞l=0 Cl · [Ql · (QT)
l]i, j (13)

we see that for a fixed l, SimRank* ŝ(i, j) uses
∑l

α=0
(l
α

) ·
[Qα · (QT)

l−α]i, j in [T̂l]i, j that captures all in-link paths
of length l for node-pair (i, j) in a comprehensive way,

as opposed to SimRank s(i, j) that uses [Ql · (QT)
l]i, j in

Eq. (13) to accommodate only symmetric in-link paths of
length 2l for node-pair (i, j) in a biased manner. As a result,
SimRank* captures all (asymmetric) in-link paths that are
ignored by SimRank: (a) in-link paths of odd length; (b) in-
link paths of even length whose “source” node is not in the
center of the path.

Although RWR and ASCOS++ capture part of in-link
paths of odd length that are missed by SimRank, they ignore
two types of non-unidirectional in-link paths that can be
captured by SimRank*: (a) symmetric ones that are accom-
modated by SimRank; (b) asymmetric ones whose “source”
node is not at the right end.

For instance, given node-pair (i, j), Fig. 2 compares all
the in-link paths of length l ∈ [1, 4] that are captured by
Jeh and Widom’s SimRank [12], Li et al.’s SimRank [19],
RWR [28], ASCOS++ [7], and SimRank*. It can be noticed
from ‘SimRank*’ column that only a small number of in-
link paths are captured by SimRank (dark gray cells) and
RWR/ASCOS++ (light gray cells).

4.2 Weighted factors of two types

We next describe two kinds of weighted factors adopted by
SimRank* model Eq. (11): (a) length weights {Cl}∞l=0; and
(b) symmetry weights {(l

α

)}lα=0.
Intuitively, the length weight Cl (0 < C < 1) measures

the importance of in-link paths of different lengths. Similar to
the original SimRank (Eq. (13)), the outer summation over
l in SimRank* (Eq. (12)) is to add up the contributions of
in-paths of different length l. The length weight Cl aims to
reduce the contributions of in-paths of long lengths relative to
short ones as {Cl}l∈[0,∞) is a deceasing sequencew.r.t. length
l.

The symmetry weight uses binomial
(l
α

)
(0 ≤ α ≤ l)

to assess the importance of in-link paths of a fixed length l,
with α edges in one direction (from the “source” node to one
end of the path) and l − α edges in the opposite direction,
where α reflects the symmetry of in-link paths of length l.
As depicted in Fig. 2, when α = 0 or l, in-link paths become
completely asymmetric, reducing to a single direction; when
α is close to �l/2�, the “source” node is near the center of
in-link paths, being almost symmetric.

To show that the use of binomial
(l
α

)
is reasonable, in

“Appendix B”, we will answer the following questions:
(a) Given a length l, why binomial value

(l
α

)
is assigned only

to l + 1 kinds of in-link paths? For example, given length
l = 4 in Fig. 2, why ignore the following paths?

ρ1 : i → ◦← ◦ → ◦ ← j, ρ2 : i ← �→ ◦← � → j

(b) Why use binomial value
(l
α

)
, instead of others, to weigh

in-link paths?
(c) Why symmetric in-link paths are considered as more
important than less symmetric ones, for a given length?

The use of (1 − C) and 1
2l in Eq. (12) is to normalize

[Ŝ]i, j and [T̂l]i, j , respectively, into [0, 1]. Specifically, we
can verify that ‖Ql1 · (QT)

l2‖max ≤ 1 (∀l1,∀l2). Thus,
(i) ‖∑l

α=0
(l
α

) ·Qα · (QT)
l−α‖max ≤

∑l
α=0

(l
α

) = 2l ,

which implies ‖T̂l‖max ≤ 1. (ii) As ‖∑∞l=0 Cl · T̂l‖max ≤∑∞
l=0 Cl = 1

1−C , it follows that ‖S‖max ≤ 1.
By combining these two kinds of weights, the contribu-

tion of any in-link paths for a given node-pair can be easily
assessed. For example in Fig. 1, h ← e ← a → d has

a contribution rate of (1 − 0.8) · 0.83 1
23
(3
2

) = 0.0384 for
node-pair (h, d). As opposed to SimRank that uses only
length weight Cl , SimRank* considers both Cl and sym-
metry weight

(l
α

)
.

4.3 Some extensions of SimRank* beyond counting
in-link paths only

It is worth mentioning that, in this paper, our proposed Sim-
Rank* model mainly focuses on counting in-link paths since
our SimRank* follows the SimRank framework that is in-
link based. Although SimRank* counts more (asymmetric)
in-link paths than SimRank with no compromise in compu-
tational time, it should be pointed out that there are some
other cases of similar node pairs with zero-similarity values
that could not be captured by counting in-link paths only. For
example, consider the following path between node a and b:

a ← ◦→ ◦ → ◦ ← ◦ → b

This path could not be captured by SimRank* since it is not
an in-link path.However,we can extend the SimRank*model
further by traversing both incoming and outgoing edges, just
as the way that Zhao et al. [36] extended SimRank to P-Rank
by taking into account both in- and out-neighboring infor-
mation. Similar to our Theorem 1, it can be shown that the
existing P-Rank model [36] implies a SimRank-like “zero-
similarity” problem, i.e., P-Rank captures only the paths in
which every two edges at the symmetric positions of the
path have different directions. For example, the following
path:

123

W. Yu et al.

a
1← ◦ 2→ ◦ 3← ◦ 4→ ◦ 5← ◦ 6→ b

can be captured by P-Rank because (i) at the symmet-

ric position (1, 6), the two edges
1← and

6→ have dif-
ferent directions; (ii) this also holds for the symmetric
position (2, 5) and (3, 4), respectively. However, the path
below:

a
1← ◦ 2→ ◦ 3← ◦ 4→ ◦ 5← ◦ 6← b

cannot be captured by P-Rank since, at the symmetric

position (1, 6), the two edges
1← and

6← have the same
directions. Fortunately, we can capture this path by extend-
ing P-Rank into a new model (namely, P-Rank*), which
follows a similar way that we extend SimRank to Sim-
Rank*. In our future work, we will formulate the P-Rank*
model in detail, and we will show that P-Rank* can count
not only in-link paths, but also other newly introduced
paths that consist of a mixture of incoming and outgo-
ing edges in any arbitrary positions, without compromising
speedup. The P-Rank* model will be more general than
SimRank*, but the key idea to extend P-Rank to P-Rank*
is similar to the idea that extends SimRank to SimRank*.
Thus, in this paper, we mainly focus on the SimRank*
model.

It is also worth mentioning that our proposed SimRank*
model that determines the similarity by counting in-link paths
also can be combined with other structural-context similar-
ity models (e.g., RoleSim [14] that considers automorphism
similarity relationship) to produce a comprehensive similar-
ity measure.

4.4 Convergence of SimRank*

As SimRank* in Eq. (11) is an infinite geometric series, it is
imperative to study the convergence of this series.

Let us first define the k-th partial sum of Eq. (11) as

Ŝk = (1− C) ·
k∑

l=0

Cl

2l
·

l∑

α=0

(
l

α

)

·Qα · (QT)
l−α

. (14)

Using Ŝk , we next show the convergence of Eq. (11).

Theorem 5 Let Ŝ and Ŝk be defined by Eqs.(11) and (14),
respectively. Then, the gap between Ŝ and Ŝk is bounded by

‖Ŝ− Ŝk‖max ≤ Ck+1. (∀k = 0, 1, . . .) (15)

(Please see “Appendix A.3” for the proof of Theorem 5).

4.5 Exponential series form of SimRank* variant

In the geometric series form of SimRank* model Eq. (11),
Theorem 5 implies that, to guarantee the accuracy ε, the
K -th partial sum ŜK with K = �logC ε� can be used to
approximate the exact solution. However, there is a variant
of SimRank* that can use only the K ′-th partial sum with
K ′ ≤ K to guarantee the same ε:

Ŝ′ = e−C ·
∞∑

l=0

Cl

l! ·
1

2l

l∑

α=0

(
l

α

)

·Qα · (QT)
l−α

. (16)

We call Eq. (16) the exponential series form of SimRank*

variant. It differs fromEq. (11) in (i) lengthweight Cl

l! (which
is an exponential sequence w.r.t. l) and (ii) its normalized
factor e−C .

The exponential series form of SimRank* is introduced to
improve the rate of convergence for similarity computation.
To clarify this, we define Ŝ′k as the k-th partial sum of Ŝ′ in
Eq. (16). Analogous to Theorem 5, one can readily prove

‖Ŝ′ − Ŝ′k‖max ≤ Ck+1
(k+1)! . (∀k = 0, 1, . . .) (17)

Comparing Eq. (17) with Eq. (15), we see that for any fixed

k, since Ck+1
(k+1)! ≤ Ck+1, the convergence rate of Ŝ′k is always

faster than that of Ŝk . Hence, to guarantee the same accuracy,
the exponential SimRank* only needs to compute a tiny frac-
tion of the partial sums of the geometric SimRank*.

The choice of length weight Cl

l! for the exponential
SimRank* (Eq. (16)) plays a key role in accelerating conver-
gence. As suggested by the proof of Theorem 5, the bound

Ck+1 in Eq. (15) (resp. Ck+1
(k+1)! in Eq. (17)) is actually derived

from our choice of length weight Cl (resp. Cl

l!) for the geo-
metric (resp. exponential) SimRank*. Thus, theremight exist
other length weights for speeding up the convergence of
SimRank*, as there is no sanctity of the earlier choices of

length weight. That is, apart from Cl and Cl

l! , other sequence,
e.g., Cl

l , that satisfies decreasing monotonicity w.r.t. length
l can be regarded as another possible candidate for length
weight, since the efficacy of the length weight is to reduce
the contributions of in-link paths of long lengths relative to

short ones. The reasons why we select Cl and Cl

l! , instead
of others, are twofold: (i) The normalized factor of length

weight should have a simple form, e.g.,
∑∞

l=0 Cl

l! = eC . (ii)
Once selected, the length weight should enable the series
form of SimRank* to be simplified into a very elegant form,

e.g., using Cl

l! allows Eq. (16) being simplified, as will be

seen in Eq. (20), into a neat closed form. In contrast, Cl

l is
not a preferred length weight as its series version may not be
simplified into a neat recursive (or closed) form, though the

form
∑∞

l=0 Cl

l = ln 1
(1−C)

is simple for normalized factor.

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

5 Recursive and closed forms of SimRank*

A brute-force way of computing the first k-th partial sums of
Eq. (11) requires O(k · l2 · n3) time, involving l2 matrix
multiplications in the inner summation for each fixed l
in the outer summation, which seems much more expen-
sive than SimRank. In this section, we propose two simple
representations of SimRank* (i.e., the recursive form of
geometric SimRank*, and the closed form of exponential
SimRank*).

5.1 Recursive form of geometric SimRank*

We first show the recursive form of the geometric SimRank*
series in Eq. (11).

Theorem 6 The SimRank* geometric series Ŝ in Eq. (11)
takes the following elegant recursive form:

Ŝ = C
2 · (Q · Ŝ+ Ŝ ·QT)+ (1− C) · In . (18)

(Please see “Appendix A.4” for the proof of Theorem 6).
Theorem 6 provides a time-efficient iterative algorithm

to compute SimRank* matrix Ŝk , with its accuracy guar-
anteed by Theorem 5. The complexity of this iterative
method is O(K nm) time and O(n2) memory. Please refer
to “Appendix C” for a detailed analysis.

The O(n2)memory of Eq. (18) is themain barrier that hin-
ders the scalability of SimRank* on large graphs. In Sect. 7,
we will provide a scalable algorithm, named ss-gSR*, that
will substantially reduce the memory from quadratic to lin-
ear, without any loss of accuracy.

Compared with SimRank that follows a simple idea that
“two distinct nodes are similar if their in-neighbors are sim-
ilar”, Theorem 6 implies a simple SimRank-like concept to
describe the basic philosophy of SimRank*, i.e., “two dis-
tinct nodes are similar if either node and the in-neighbors of
the other node are similar.” Indeed, for two distinct nodes
a and b, when their in-neighbors are not empty, this simple
idea of SimRank* is observed by rewriting Eq. (18) into the
following component form:

ŝ(a, b) = C

2

(∑
y∈I(b) ŝ(a,y)

|I(b)|
︸ ︷︷ ︸

Part 1

+
∑

x∈I(a) ŝ(x,b)

|I(a)|
︸ ︷︷ ︸

Part 2

)

(a �= b)

(19)

where SimRank* similarity ŝ(a, b) consists of two parts: (i)
Part 1 is the average similarity between node a and node
b’s in-neighbors; (ii) Part 2 is the average similarity between
node b and node a’s in-neighbors.

5.2 Closed form of exponential SimRank*

Having converted the series form of geometric SimRank*
into a simple recursive form, we next present the closed form
of exponential SimRank* in Eq. (16).

Theorem 7 The exponential series form of SimRank* in
Eq. (16) neatly takes the following closed form:

Ŝ′ = e−C · e C
2 Q · e C

2 QT
, (20)

where exponential eX � I + X + X2

2! + · · · =
∑∞

k=0 Xk

k! for
a square matrix X.

(Please see “Appendix A.5” for the proof of Theorem 7).
The utility of Theorem 7 will be shown in Sect. 6.4 for

optimizing the exponential SimRank* computation.

6 Accelerate SimRank* computation

To accelerate SimRank* iterations in Eq. (50), the conven-
tional optimization techniques [24] for SimRank cannot be
effectively applied to SimRank*. Lizorkin et al. [24] pro-
posed “partial sums memoization” to optimize SimRank
computation. To show why it does not work for SimRank*,
let us compare the component forms of SimRank and Sim-
Rank* in Eqs.(21) and (22), respectively:

sk+1(a, b) = C
|I(a)||I(b)|

∑

x∈I(a)

=Partialsk
I(b)

(x)
︷ ︸︸ ︷∑

y∈I(b)

sk(x, y) . (21)

×ŝk+1(a, b)

= C
2|I(b)|

∑

y∈I(b)

ŝk(a, y)

︸ ︷︷ ︸

=Partialŝk
I(b)

(a)

+ C
2|I(a)|

∑

x∈I(a)

ŝk(x, b). (22)

For SimRank, if I(a) and I(�) have some node, say i , in
common, then the partial sum Partialsk

I(b)
(i) in Eq. (21), once

memoized, can be reused in both ŝk+1(a, b) and ŝk+1(�, b)

computation. In contrast, for SimRank*, regardless of I(a)∩
I(�) �= ∅, the partial sum Partialŝk

I(b)
(a) in Eq. (22) for com-

puting ŝk+1(a, b), if memoized, has no chance to be reused
again in computing other similarities ŝk+1(�, b), where � is
any node in G except a.

6.1 Fine-grainedmemoization

Instead ofmemoizing the results of
∑

y∈I(b) ŝk(a, y) over the
whole set I(b) in Eq. (22), we use fine-grained memoization

123

W. Yu et al.

for optimizing SimRank* by memoizing a partial sum over
a subset as follows:

Partialŝk
Δ(a) �

∑

y∈Δ
ŝk(a, y) with Δ ⊆ I(�).

Our observation is that there may be duplicate addi-
tions among

∑
y∈I(�) ŝk(a, y) over different in-neighbor sets

I(�). Thus, once memoized, the result of Partialŝk
Δ(a) can

be shared among many sums
∑

y∈I(�) ŝk(a, y) for comput-
ing ŝk+1(a, �). As an example in Fig. 1, I(h) and I(i) have
three nodes {e, j, k} in common, and thus, once memoized,
the resulting fine-grained partial sum Partialŝk{e, j,k}(a) can be
shared between

∑
y∈I(h) ŝk(a, y) and

∑
y∈I(i) ŝk(a, y) for

computing both ŝk+1(a, h) and ŝk+1(a, i) via Eq. (22), for
any fixed a. However, it seems difficult to find perfect fine-
grained subsetsΔ ⊆ I(�) for maximal computation sharing,
since there may be many arbitrarily overlapped in-neighbor
sets in a graph. To overcome this difficulty, we will employ
efficient techniques of bipartite graph compression via edge
concentration for finding such fine-grained subsets.

6.2 Induced bigraph

Definition 4 An induced bipartite graph (bigraph) from a
given graph G = (V, E) is a bipartite graph G̃ = (T ∪B, Ẽ),
such that its two disjoint node sets T = {x ∈ V |O(x) �= ∅},
B = {x ∈ V | I(x) �= ∅},2 and for each u ∈ T and v ∈ B,
(u, v) ∈ Ẽ if and only if there is an edge from u to v in G.

Intuitively, an induced bigraph G̃ = (T ∪B, Ẽ) visualizes
the neighborhood structure of G from a different perspective.
For any x ∈ B, the nodes in T that are connected with x
correspond to the in-neighbors of x in G. Note that when
node x has both in- and out-neighbors in G, label x that
appears in both T and B will be regarded as two distinct
nodes despite the same label. To avoid ambiguity, we shall
use x ∈ T and x ∈ B to distinguish them. Each directed edge
in G is mapped to one edge in G̃, and thus, |E | = |Ẽ |. For
instance, the left part of Fig. 3 shows the induced bigraph G̃
from G of Fig. 1. From G̃, we can clearly see that b and d in
B are both connected with a in T , meaning that, in G, b and
d both have an in-neighbor a.

6.3 Biclique compression via edge concentration

Based on the induced bigraph G̃, we next introduce the notion
of bipartite cliques (bicliques).

Definition 5 Given an induced bigraph G̃ = (T ∪ B, Ẽ), a
pair of two disjoint subsets X ⊆ T and Y ⊆ B is called a
biclique if (x, y) ∈ Ẽ for all x ∈ X and y ∈ Y .

2 O(x) denotes the out-neighbor set of node x .

a b d e f h j k

b c d e f g h i

T

B

a b d e f h j k

b c d e f g h i

T

B

v1 v2

G̃ = (T ∪ B, Ẽ) Ĝ = (T ∪ B ∪ V̂, Ê)

Fig. 3 Compression of G̃ into Ĝ via edge concentration

Intuitively, a biclique (X ,Y) is a complete bipartite sub-
graph of G̃, which has |X | + |Y| nodes and |X | × |Y|
edges. Each biclique (X ,Y) in G̃ implies that, in G, all
nodes y ∈ Y have the common in-neighbor set X . For
example, there are two bicliques ({b, d}, {c, g, i}) in dashed
line, and ({e, j, k}, {h, i}) in dotted line in Fig. 3. Biclique
({b, d}, {c, g, i}) in G̃ implies that in G, nodes c, g, i have
two in-neighbors {b, d} in common.

Bicliques are introduced to compress bigraph G̃ for opti-
mizing SimRank* computation. In “Appendix D.1”, we
present themain idea of our bigraph compression techniques.
Then, we propose an algorithm,memo-gSR*, for computing
all-pairs SimRank* quickly, by using fine-grained memoiza-
tion (“Appendix D.2”). The correctness and complexity of
memo-gSR* are shown in “Appendix D.3”, which requires
O(K nm̃) time and O(n2) memory, followed by a running
example in “Appendix D.4”.

To scale memo-gSR* on large graphs, in Sect. 7 we will
propose a memory-efficient algorithm, ss-gSR*.

6.4 Exponential SimRank* optimization

The aforementioned optimization methods for (geometric)
SimRank* computation can be readily extended to expo-
nential SimRank* variant. Please refer to “Appendix D.5”
for the optimization techniques generalized to speed up the
exponential SimRank* search.

7 Linearize SimRank*memory

In Sect. 6, our optimization techniques focus on speeding up
the computation of SimRank*, which is based on the follow-
ing iterative model to evaluate Ŝk :

{
Ŝ0 = (1− C) · In,

Ŝk = C
2 (Q · Ŝk−1 + Ŝk−1 ·QT)+ (1− C) · In .

(23)

However, the memory space of the above iteration entails
O(n2). This is because, for each iteration of Eq. (23), even if

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

= C
2 +Q Ŝk−1 QTŜk−1 +Ŝk (1 − C)

qqqq

In

a single column [Ŝk] all-pairs [Ŝk−1] eq

Fig. 4 Based on Eq. (23), computing one column [Ŝk]�,q requires all-
pairs [Ŝk−1]�,� to be prepared in advance

we want to compute a single entry of Ŝk at the k-th iteration,
all (n2) pairs of SimRank* scores Ŝk−1 at the previous iter-
ation need to be prepared in advance, as pictorially depicted
in Fig. 4. This would hinder the scalability of SimRank* on
large graphs.

To resolve this problem, in this section, we propose a
memory-efficient version of SimRank*, which linearizes the
memory space of Eq. (14) without loss of accuracy. Let us
now recall the k-th partial sum of the SimRank* power series
form in Eq. (14):

Ŝk = (1− C) ·
k∑

l=0

Cl

2l
·

l∑

α=0

(
l

α

)

·Qα · (QT)
l−α

. (24)

From the proof of Theorem 6 in Sect. 5.1, we discern
that the k-th partial sum of the SimRank* power series in
Eq. (24) produces exactly the same results as the k-th itera-
tive SimRank* model in Eq. (23). Since the right-hand side
of Eq. (24) depends only on Q and C , we can compute Ŝk

in a column-by-column fashion, which requires only linear
memory. However, a key challenge is that there are many
unnecessary duplicate computations thatwill greatly increase
the overheads. Precisely, let eq be an n × 1 unit vector:

eq =
[

(q)

0 · · · 0 1 0 · · · 0]T

If we multiply eq (q = 1, . . . , n) on both sides of Eq. (24),
it will produce

[Ŝk]∗,q = (1− C)

k∑

l=0

Cl

2l

l∑

α=0

(
l

α

)

Qα(QT)
l−α

eq . (25)

We notice that, if the matrix-vector multiplications in the
right-hand side of Eq. (25) are carried out as below:

Qα(QT)
l−α

eq

=
(
Q · · · · ·

(
Q ·

(
Q

︸ ︷︷ ︸
α times

·
(
QT (· · · · · (QT · (QT

︸ ︷︷ ︸
(l−α) times

·eq
)))))))

it requires only O(m)memory to compute Eq. (25) (which is
dominated bymatrix-vector multiplications), but the compu-
tational time is prohibitively expensive. Indeed, due to double

summations in Eq. (25), given l and α, it requires α + (l −
α) matrix-vector multiplications to compute Qα(QT)

l−α
eq .

Therefore, the total number of matrix-vector multiplications
required for Eq. (25) is

k∑

l=0

l∑

α=0

(
α + (l − α)

) =
k∑

l=0
(l + 1)l = k(k + 1)(k + 2)

3

which is rather costly. However, we observe that there are
many duplicate computations across the double summations
in Eq. (25). For example, let us consider the two cases when
l = 4, α = 1 and l = 2, α = 0, respectively. There are over-

lapping matrix-vector multiplications between Q1(QT)
3
eq

and Q0(QT)
2
eq , as shown below:

Q1(QT)
3
eq = Q

(
QT (

overlapping part
︷ ︸︸ ︷

QT (QT eq
)))

Q0(QT)
2
eq = QT (QT eq

)

︸ ︷︷ ︸
overlapping part

Thus, it is imperative to devise an efficient method that can
remove duplicate computations by reusing overlapping parts
for subsequent repeated multiplications.

7.1 Single-source geometric SimRank*

To efficiently compute a single column of the SimRank*
matrix Ŝk , we first focus on geometric SimRank* search, and
propose an efficient method that requires only linear memory
while minimizing duplicate computations without any loss
of accuracy.

Theorem 8 (Single-Source Geometric SimRank*) Given
query q, the single-source geometric SimRank* between all
nodes and q at the k-th iteration of Eq. (23), denoted as
[Ŝk]∗,q , can be iteratively computed as

[Ŝk]∗,q = (1− C) · uk (26)

where the vector uk is iteratively derived by

{
u0 = m(k)

k+1
ui = m(k−i)

k+1 + C
2 ·Q · ui−1 (i = 1, 2, . . . , k)

(27)

and m(0)
k+1,m

(1)
k+1, . . . ,m

(k)
k+1 are iteratively obtained by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(−1)
i = eq (i = 0, 1, 2, . . . , k)

m(i)
i = 0 (i = 0, 1, 2, . . . , k)

m(j)
i = C

2 ·QT ·m(j)
i−1 (i = 1, 2, . . . , k + 1;

+m(j−1)
i−1 j = 0, 1, . . . , i − 1)

(28)

123

W. Yu et al.

Before proving Theorem 8, we first give an example to
illustrate the application of this theorem to compute single-
source SimRank* efficiently.

Example 3 Recall the graph in Fig. 1. Given query node e, the
decay factorC = 0.6, and the number of iterations k = 3, the
single-source geometric SimRank* [Ŝk]∗,e can be computed
via Theorem 8 as follows:

First, according to Eq. (28), we iteratively compute the
auxiliary vectors m(0)

4 ,m(1)
4 ,m(2)

4 ,m(3)
4 as follows:

i j m(j)
i

1 0 m(0)
1 = C

2 Q
T

=0
︷︸︸︷

m(0)
0 +

=ee
︷ ︸︸ ︷

m(−1)
0 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

2 0 m(0)
2 = C

2 Q
T m(0)

1 +
=ee
︷ ︸︸ ︷

m(−1)
1 = [.3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

1 m(1)
2 = C

2 Q
T m(1)

1︸︷︷︸
=0
+m(0)

1 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

3 0 m(0)
3 = C

2 Q
T m(0)

2 +
=ee
︷ ︸︸ ︷

m(−1)
2 = [.3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

1 m(1)
3 = C

2 Q
T m(1)

2 +m(0)
2 = [.6, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

2 m(2)
3 = C

2 Q
T m(2)

2︸︷︷︸
=0
+m(1)

2 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

4 0 m(0)
4 = C

2 Q
T m(0)

3 +
=ee
︷ ︸︸ ︷

m(−1)
3 = [.3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

1 m(1)
4 = C

2 Q
T m(1)

3 +m(0)
3 = [.6, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

2 m(2)
4 = C

2 Q
T m(2)

3 +m(1)
3 = [.9, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

3 m(3)
4 = C

2 Q
T m(3)

3︸︷︷︸
=0
+m(2)

3 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

Next, based on Eq. (26), we iteratively compute the vector
u3 from m(0)

4 ,m(1)
4 ,m(2)

4 ,m(3)
4 as follows:

i ui

0 u0 = m(3)
4 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

1 u1 = m(2)
4 + C

2 Qu0 = [.9, 0, 0, 0, 1, 0, 0, .3, .1]T

2 u2 = m(1)
4 + C

2 Qu1 = [.6, .27, 0, .135, 1.27, 0, 0, .3, .1]T

3 u3 = m(0)
4 + C

2 Qu2
= [.3, .18, .061, .09, 1.18, .081, .061, .381, .168]T

Finally, [Ŝ3]∗,e can be obtained from u3 via Eq. (26):

[Ŝ3]∗,e = (1− C) · u3 = 0.4 · u3
= [.12, .072, .0243, .036, .472, .0324, .0243, .1524, .067]T

��

(eq =)m(−1)
0

(eq =)m(−1)
1

(eq =)m(−1)
2

(eq =)m(−1)
3

m(0)
1

m(0)
2

m(0)
3

m(1)
1 (= 0)

m(1)
2

m(1)
3

m(0)
0 (= 0)

m(2)
2 (= 0)

m(2)
3

(eq =)m(−1)
k m(0)

k m(1)
k m(2)

k

...

m(0)
k+1 m(1)

k+1 m(2)
k+1

m(3)
3 (= 0)

...
m(3)

k

m(3)
k+1

m(k−1)
k

m(k−1)
k+1 m(k)

k+1

. . .
· · ·

· · ·

. . .
m(k)

k (= 0)

...

j = −1 j = 0 j = 1 j = 2 j = 3 j = k − 1 j = k

i = 0

i = 1

i = 2

i = 3

· · ·

i = k

i = k + 1

...

m(j)
i

m(1)
3 = (C2Q

T)·m(1)
2 +m(0)

2

Fig. 5 A Pascal’s triangle pattern of Eq. (28) that iteratively obtains
m(0)

k+1,m
(1)
k+1, . . . ,m

(k)
k+1 (in last row) from scratch

Theorem 8 efficiently assesses single-source SimRank*
by merging duplicate matrix-vector computations, which is
due to our novel iterative model Eq. (28) that employs a Pas-
cal’s triangle pattern. Pictorially, Fig. 5 depicts how Eq. (28)
iteratively obtainsm(0)

k+1,m
(1)
k+1, . . . ,m

(k)
k+1 (in last row) from

scratch using a Pascal’s triangle style. To generate the Pas-
cal’s triangle in Fig. 5, we start to write the first row with two
elements m(−1)

0 and m(0)
0 , which are initialized to eq and 0,

respectively. Then, each new row i (i = 1, 2, . . . , k + 1)
is generated as follows: (a) Each new row i starts with
m(−1)

i initialized to eq , and ends with m(i)
i initialized to 0.

(b) The remaining elements m(j)
i (j = 1, 2, . . . , i − 1) in

each new row i are derived from two elements m(j)
i−1 and

m(j−1)
i−1 in the row above which lie above and above-left.

Thus, every three elements m(j)
i ,m(j)

i−1,m
(j−1)
i−1 form a Pas-

cal’s triangle pattern, which means thatm(j)
i is derived from

pre-multiplying m(j)
i−1 by (C

2Q
T) plus m(j−1)

i−1 . For instance,

the red Pascal’s triangle pattern in Fig. 5 indicates that m(1)
3

is obtained by pre-multiplying m(1)
2 by (C

2Q
T) plus m(0)

2 ,

i.e.,m(1)
3 ← (C

2Q
T) ·m(1)

3 +m(0)
2 .

The main advantages of Theorem 8 are fourfold:

1. It provides amemory-efficient iterativemodel that allows
SimRank* retrieval scaling well on large graphs, without
compromising accuracy and with no need to store all
(n2) pairs SimRank* scores Ŝk−1 at the previous iteration
of Eq. (23). As opposed to the O(n2) memory of the
conventional iterative model Eq. (23), our new iterative
model in Theorem 8 requires only O(kn + m) memory,
which is dominated by matrix-vector multiplicationsQ ·
ui−1 in Eq. (27) and QT ·m(j)

i−1 in Eq. (28).
2. Compared with the straightforward right-to-left associ-

ation in Eq. (25) that requires k(k+1)(k+2)
3 matrix-vector

multiplications, our novel iterative model in Theorem 8

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

Algorithm 1: ss-gSR* (G, q, C, K)

Input : graph G = (V,E),
query q,
damping factor C ,
iteration K .

Output: single-source geometric SimRank* ŝK (�, q).
1 set Q← the backward transition matrix of G ;
2 for i ← 0, 1, . . . , K do
3 initialize m(−1)

i ← eq , andm
(i)
i ← 0 ;

4 for i ← 1, 2, . . . , K + 1 do
5 for j ← 0, 1, . . . , i − 1 do
6 compute m(j)

i ← C
2 ·QT ·m(j)

i−1 +m(j−1)
i−1 ;

7 free m(j−1)
i−1 ;

8 initialize u0 ← m(K)
K+1 ;

9 for i ← 1, 2, . . . , K do
10 compute ui ← m(K−i)

K+1 + C
2 ·Q · ui−1 ;

11 free ui−1 ;
12 return ŝK (�, q)← (1− C) · uK ;

utilizes a Pascal’s triangle fashion to evaluate {m(i)
j }

that effectively eliminates duplicate multiplications and
significantly reduces the number of matrix-vector multi-
plications to

(k∑

i=1
1
)

︸ ︷︷ ︸
Eq.(27)

+
(k+1∑

i=1

i−1∑

j=0
1
)

︸ ︷︷ ︸
Eq.(28)

= k + (k + 1)(k + 2)

2

3. Theorem 8 implies an efficient parallel algorithm for
all-pairs SimRank* search. Indeed, the computation of
all-pairs SimRank* Ŝ can be broken into n columns
[Ŝ]∗,q (q = 1, . . . , n) of single-source SimRank* search,
where each column can be computed concurrently on dif-
ferent processors via Theorem 8. In contrast, the previous
iterative model Eq. (23) to compute all-pairs SimRank*
is not parallelizable.

4. The iterative model in Theorem 8 is query-dependent,
which provides an on-demand retrieving strategy for
SimRank*. That is, SimRank* scores can be retrieved
on an as-needed basis by Theorem 8. In comparison, the
previous model Eq. (23) always outputs all-pairs scores
even if only a fraction of scores are requested.

Based on Theorem 8,we provide amemory-efficient algo-
rithm, ss-gSR*, for single-source geometric SimRank*. We
analyze its complexity and correctness below:

Theorem 9 (Complexity) Given a graph G, a query q, and
the number of iterations K , ss-gSR* requires O(K n + m)

memory and O(K 2m) time to iteratively compute single-
source geometric SimRank* scores [ŜK]�,q .

(Please see “Appendix A.6” for the proof of Theorem 9).

It is worth mentioning that our edge concentration
approach in Sect. 6 can be integrated with ss-gSR* to enable
a further speedup of single-source SimRank* retrieval. We
just need to replaceQ of G with the new backward transition
matrix of the compressed graph of G in Algorithm 1. Then,
the total time of ss-gSR*becomes O(K 2m̃+m̃ log(2n)) time,
where m̃ is the number of edges in the compressed graph, and
O(m̃ log(2n)) is the time required for graph compression.

Correctness To show that the results ŝK (�, q) output by
ss-gSR* are correct, let us first propose the following two
lemmas, which will be used to prove Theorem 8.

Lemma 2 For each iteration i = 0, 1, . . . , k, the vector ui

obtained by the following iterations

⎧
⎨

⎩

u0 = m(k)
k+1

ui = m(k−i)
k+1 + C

2 ·Q · ui−1 (i = 1, 2, . . . , k)
(29)

is expressible as

ui =
k∑

j=k−i

(C
2 ·Q

) j−k+i ·m(j)
k+1. (30)

(Please see “Appendix A.7” for the proof of Lemma 2).

Lemma 3 Given query node q and the total number of iter-
ations k, we define a sequence of vectors {m(j)

i } as

m(−1)
i = eq (i = 0, 1, . . . , k) (31a)

m(i)
i = 0 (i = 0, 1, . . . , k) (31b)

m(j)
i = C

2 ·QT ·m(j)
i−1 (i = 1, . . . , k + 1;

+m(j−1)
i−1 j = 0, . . . , i − 1) (31c)

Then, m(0)
k+1,m

(1)
k+1, . . . ,m

(k)
k+1 satisfy the equations:

(j !)m(j)
k+1 =

k− j∑

i=0
(i+ j)!

i ! (C
2Q

T)
i
eq (j = 0, . . . , k) (32)

where x ! denotes the factorial of x.

Proof When k = 0, it follows from Eq. (31c) that

m(0)
1 = C

2 ·QT ·m(0)
0︸︷︷︸
=0
+m(−1)

0︸ ︷︷ ︸
=eq

= eq .

Thus, the following equation holds:

(0!) ·m(0)
1 = eq =

0∑

i=0

(i + 0)!
i ! (C

2 ·QT)
i
eq (induction basis)

123

W. Yu et al.

which implies that Eq. (32) holds for k = 0. Assume that,
for k = N , Eq. (32) holds, i.e.,

m(j)
N+1 =

1

j !
N− j∑

i=0
(i+ j)!

i ! (C
2 ·QT)

i
eq (hypothesis)

=
N− j∑

i=0

(
i + j

i

)

(C
2Q

T)
i
eq (j = 0, . . . , N) (33)

Wenext show that, for k = N+1,Eq. (32) holds. Specifically,
setting i = k (= N + 1) in Eq. (31c) produces

m(j)
N+2 = C

2 ·QT ·m(j)
N+1 +m(j−1)

N+1 (j = 0, 1, . . . , N + 1)

Plugging m(j)
N+1 of Eq. (33) to the above equation yields

m(j)
N+2 = C

2 ·QT ·m(j)
N+1 +m(j−1)

N+1

=
N− j∑

i=0

(
i + j

i

)

(C
2 ·QT)

i+1
eq

+
N− j+1∑

i=0

(
i + j − 1

i

)

(C
2 ·QT)

i
eq

=
N− j+1∑

i=1

(
i + j − 1

i − 1

)

(C
2 ·QT)

i
eq

+
⎛

⎝In +
N− j+1∑

i=1

(
i + j − 1

i

)

(C
2 ·QT)

i

⎞

⎠ eq

=
N− j+1∑

i=1

((
i + j − 1

i − 1

)

+
(

i + j − 1

i

))

︸ ︷︷ ︸

=(i+ j
i)

(C
2Q

T)
i
eq + eq

=
N+1− j∑

i=0

(
i + j

i

)

· (C
2 ·QT)

i
eq

which completes the inductive step. ��
Leveraging Lemmas 2 and 3, we will complete the proof

of Theorem 8.

Proof of Theorem 8 Based on Lemma 2, setting i = k in
Eq. (30) produces

uk =
k∑

j=0

(C
2 ·Q

) j ·m(j)
k+1. (34)

According to Lemma 3, m(0)
k+1,m

(1)
k+1, . . . ,m

(k)
k+1 defined by

Eq. (28) satisfies

m(j)
k+1 =

k− j∑

i=0

(i + j)!
i ! j ! (C

2 ·QT)
i
eq

=
k− j∑

i=0

(
i + j

i

)

(C
2 ·QT)

i
eq (j = 0, . . . , k) (35)

Substituting Eq. (35) into (34) produces

uk =
k∑

j=0

(C
2 ·Q

) j ·
k− j∑

i=0

(
i + j

i

)

(C
2 ·QT)

i
eq

=
k∑

j=0

k− j∑

i=0

(
i + j

i

)

· (C
2 ·Q

) j
(C
2 ·QT)

i
eq

=
k∑

l=0

l∑

α=0

(
l

α

)

· (C
2 ·Q

)α
(C
2 ·QT)

l−α
eq (36)

The last equality holds since switching the order of the sum
is equivalent (as pictorially depicted below):

k∑

j=0

k− j∑

i=0
f (i, j) =

∑

t∈{(i, j)|i≤ j≤k}
f (t) =

k∑

l=0

l∑

α=0
f (l, α)

⇓ ⇓
⎡

⎢
⎢
⎢
⎢
⎣

→ → → · · · → →
→ → → · · · →
· · · · · ·
→ →
→

⎤

⎥
⎥
⎥
⎥
⎦

k×k

=

⎡

⎢
⎢
⎢
⎢
⎣

↗ ↗ ↗ · · · ↗
↗ ↗ · · · ↗
↗ · · · ↗
· · · ↗
↗

⎤

⎥
⎥
⎥
⎥
⎦

k×k

Thus, plugging Eq. (36) into (26) produces

[Ŝk]∗,q = (1− C) ·
k∑

l=0

Cl

2l

l∑

α=0

(
l

α

)

·Qα · (QT)
l−α

eq

Comparing this with the k-th partial sum of SimRank* in
Eq. (14), we can see that our new iterationmodel in Eqs.(26)–
(28) produces correct SimRank* results. ��

7.2 Single-source exponential SimRank*

Havingderived the single-sourcegeometricSimRank*model
in Sect. 7.1, we next focus on the single-source exponential
SimRank* assessment. To efficiently evaluate a single col-
umn of the exponential SimRank* matrix Ŝ′k in Eq. (16), we
propose the following iterative model, whose CPU time and
memory are not only linear w.r.t. the number of edges in the
graph, but also less than those of the single-source geometric
SimRank*.

Theorem 10 (Single-Source Exponential SimRank*) Given
query node q, the single-source exponential SimRank*
between all nodes and q at the k-th iteration of Eq. (23),
denoted as [Ŝ′k]∗,q , can be iteratively derived as

[Ŝ′k]∗,q = e−C · vk (37)

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

where the vector vk is iteratively derived by

{
v0 = uk

vi = C
2(k−i+1)Qvi−1 + uk (i = 1, 2, . . . , k)

(38)

and the vector uk is iteratively obtained by

{
u0 = eq

ui = C
2(k−i+1)Q

Tui−1 + eq (i = 1, 2, . . . , k)
(39)

Proof We first prove that uk =∑k
j=0 C j

2 j · j ! (Q
T)

j
eq .

Based on Eq. (39), for all i = 1, 2, . . . , k

ui − C
2(k−i+1)Q

Tui−1 = eq

Multiply both sides of this equation by Ck−i

2k−i ·(k−i)! (Q
T)

k−i
,

and then sum both sides from i = 1 to k, which yields

k∑

i=1
Ck−i

2k−i ·(k−i)! (Q
T)

k−i
ui −

k∑

i=1
Ck−i+1

2k−i+1·(k−i+1)! (Q
T)

k−i+1
ui−1

=
k∑

i=1
Ck−i

2k−i ·(k−i)! (Q
T)

k−i
eq (40)

Since

LHS of (40) =
k−1∑
j=0

C j

2 j · j ! (Q
T)

j
uk− j −

k∑

l=1
Cl

2l ·l! (Q
T)

l
uk−l

= uk − Ck

2k ·k! (Q
T)

k
u0

RHS of (40) =
k−1∑
j=0

C j

2 j · j ! (Q
T)

j
eq

Thus,

uk = Ck

2k ·k! (Q
T)

k
u0 +

k−1∑
j=0

C j

2 j · j ! (Q
T)

j
eq

= {using u0 = eq} =
k∑

j=0
C j

2 j · j ! (Q
T)

j
eq (41)

Similarly, according to Eq. (38), we can prove that

vk =∑k
l=0 Cl

2l ·l!Q
luk (42)

Plugging Eqs.(41) and (41) into (37) produces

[Ŝ′k]∗,q = e−C
k∑

l=0
Cl

2l ·l!Q
l
(

k∑

j=0
C j

2 j · j ! (Q
T)

j
eq

)

= e−C e
C
2 Qe

C
2 QT

eq

��

Algorithm 2: ss-eSR* (G, q, C, K)

Input : graph G = (V,E),
query q,
damping factor C ,
iteration K .

Output: single-source exponential SimRank* ŝ′K (�, q).
1 set Q← the backward transition matrix of G ;
2 initialize u← eq ;
3 for i ← 0, 1, . . . , K − 1 do
4 compute u← C

2(K−i)Q
T · u+ eq ;

5 initialize v← u ;
6 for i ← 0, 1, . . . , K − 1 do
7 compute v← C

2(K−i)Q · v + u ;

8 return ŝ′K (�, q)← e−C · v ;

Theorem 10 implies an efficient algorithm, ss-eSR*, for
single-source exponential SimRank* search. Its computa-
tional complexity is analyzed as follows:

Theorem 11 (Complexity) Given a graph G, a query node q,
and the total number of iterations K , ss-eSR* yields O(m +
n) memory and O(K m) time to iteratively compute single-
source exponential SimRank* scores [Ŝ′K]�,q .

Proof The memory of ss-eSR* is O(m + n), which is domi-
nated by (i) O(m) for storing sparseQ (line 1), and (ii) O(n)

for storing vectors u (line 4) and v (line 7).
The time complexity of ss-eSR* is O(K m), which is dom-

inated by the matrix-vector multiplications (QT · u) (line 4)
and (Q · v) (line 7) for K iterations. ��

Compared with the O(K 2m) time of the single-source
geometric SimRank* algorithm ss-gSR*, the single-source
exponential SimRank* reduces the time from O(K 2m) to
O(K m) further, linear with K . Moreover, the memory of ss-
gSR* is improved from O(K n+m) to O(n+m), independent
of K . This is because, for the single-source exponential Sim-
Rank* computation, the iterative process in Eq. (38) relies
only on the resulting uK . Thus, there is no need of O(K n)

memory to store K vectors {u1, . . . ,uK } in Eq. (39).
Example 4 Recall the graph in Fig. 1. Given query node b,
the decay factor C = 0.6, and the number of iterations k =
3, the single-source exponential SimRank* [Ŝ′k]∗,b can be
computed via Theorem 10 as follows:

First, we iteratively obtain the auxiliary vector u3 based
on Eq. (39) as follows:

i ui

0 u0 = eb = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T
1 u1 = C

2·3Q
Tu0 + eb = [.1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

2 u2 = C
2·2Q

Tu1 + eb = [.15, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T
3 u3 = C

2·1Q
Tu1 + eb = [.3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

123

W. Yu et al.

Next, we iteratively derive the vector v3 from Eq. (38):

i vi

0 v0 = v3 = [.3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T
1 v1 = C

2·3Qv0 + u3
= [.3, 1.03, .05, .015, .03, .1, .05, 0, .0333]T

2 v2 = C
2·3Qv1 + u3

= [.3, 1.05, .078, .03, .045, .155, .078, .005, .054]T
3 v3 = C

2·3Qv2 + u3
= [.3, 1.09, .161, .068, .09, .314, .161, .014, .112]T

Finally, [Ŝ′3]∗,b can be obtained from u3 via Eq. (37):

[Ŝ′3]∗,b = e−C · u3 = e−0.6 · u3
= [.165, .598, .089, .037, .049, .172, .089, .007, .062]T

��

8 Comparison with “adding self-loops”

Apart from SimRank*, there is another simple method that
adds a self-loop on each node of a graph to fix the “zero-
similarity” issue of SimRank. In this section, we vindicate
that SimRank* is more efficacious than the “adding self-
loops” SimRank method in that there are many node-pairs
over-counted in the similarity of the “adding self-loops”
method.

To elaborate on this, we consider the first two consecutive
steps of the two recursive models, respectively.

We first consider SimRank*. At the first step, ŝ(a, b) is
defined by the similarities between pairs of nodes:

{(a′, b)}a′→a and {(a, b′)}b′→b (43)

Let us now unfold the SimRank* recursion one step fur-
ther. We notice that (i) the similarity of (a′, b) is defined in
terms of the similarity between pairs of nodes {(a′′, b′)}a′′→a′
and {(a′, b′)}a′→a,b′→b; and (ii) the similarity of (a, b′) is
defined in terms of the similarity between pairs of nodes
{(a′, b′)}a′→a,b′→b and {(a, b′′)}b′′→b′ . Thus, at the second
step, the SimRank* ŝ(a, b) is defined in terms of the similar-
ities between pairs of nodes:

{(a′′, b′)}a′′→a′, {(a′, b′)}a′→a,b′→b, {(a, b′′)}b′′→b′ (44)

From (43) and (44), we see that there are no node-pairs
repeatedly counted across the two consecutive steps of Sim-
Rank*.

In contrast, we next consider the “adding self-loops”
method of SimRank. At the first step, after we add a self-loop

on each node of the graph, SimRank defines the similar-
ity between a pair of nodes (a, b) in terms of the similarity
between node-pairs:

{(a′, b′)}a′→a,b′→b, {(a′, b)}a′→a, {(a, b′)}b′→b (45)

If we unfold the SimRank recursion one step further,
we see that (i) the similarity of (a′, b′) is defined in terms
of the similarity between pairs of nodes {(a′′, b′)}a′′→a′ ,
{(a′′, b′′)}a′′→a′,b′′→b′ , and {(a′, b′′)}b′′→b′ ; (ii) the sim-
ilarity of (a′, b) is defined in terms of the similarity
between pairs of nodes {(a′′, b′)}a′′→a′,b′→b, {(a′′, b)}a′′→a′
and {(a′, b′)}b′→b; and (iii) the similarity of (a, b′) is
defined in terms of the similarity between pairs of nodes
{(a′, b′′)}a′→a,b′′→b′ , {(a′, b′)}a′→a and {(a, b′′)}b′′→b′ . Thus,
at the second step, the similarity of the “adding self-loops”
SimRank method is defined in terms of the similarities
between pairs of nodes:

{(a′′, b′)}a′′→a′,b′→b {(a′′, b)}a′′→a′

{(a′, b′′)}a′→a,b′′→b′ {(a, b′′)}b′′→b′

{(a′, b′)}a′→a,b′→b (46)

From (45) and (46), we notice that, for the “adding self-
loops” method, the node-pairs {(a′, b′)}a′→a,b′→b (under-
lined parts) that have been counted in the first step are
counted again in the next step. Over-counting the node-
pairs {(a′, b′)}a′→a,b′→b will lead to excessive length weight
coefficients assigned to the similarity contribution of the
term {(a′, b′)}a′→a,b′→b. In contrast, SimRank* has no over-
counted node-pairs across two consecutive steps. Thus, the
“adding self-loops” method of SimRank is less efficacious
than SimRank*.

9 Experimental evaluation

9.1 Experimental settings

Datasets We adopt both real and synthetic datasets.
(1) Real datasetsThe size of each dataset is shown in Table 2.
A detailed description is given in “Appendix E.1”.
(2) Synthetic datasets To produce synthetic networks, we use
a graph generator GTgraph3 that takes as input the number
of nodes |V| and edges |E |.
Compared algorithmsWecompare the following algorithms:
(a) ss-gSR* and ss-eSR*, our single-source geometric and
exponential SimRank* algorithms in Sect. 7; (b) SL-SR
[27] and KM-SR [16], the state-of-the-art single-source Sim-
Rank algorithms based on indexing strategies and random

3 www.cse.psu.edu/~madduri/software/GTgraph/index.html.

123

www.cse.psu.edu/~madduri/software/GTgraph/index.html

SimRank*: effective and scalable pairwise similarity search based on graph topology

Table 2 Description of real
datasets (d̄ = |E|/|V|) Datasets |V| |E| d̄

Small D06 (2006–2008) 13,752 72,522 5.3

D09 (2009–2011) 13,124 73,572 5.6

D02 (2002–2007) 15,241 86,525 5.7

CitH (cit-HepPh) 34,546 421,578 12.2

Med Email (Email-EuAll) 265,214 420,045 1.6

WebG (web-Google) 916,428 5,105,039 5.6

Large WikT (Wiki-Talk) 2,394,385 5,021,410 2.1

SocL (soc-LiveJournal) 4,847,571 68,993,773 14.2

UK05 (uk-2005) 39,459,925 936,364,282 23.7

IT04 (it-2004) 41,291,594 1,150,725,436 27.9

sampling; (c) RWR [15], a fast randomwalk with restart algo-
rithm measuring node proximities w.r.t. a given query; (d)
memo-gSR* and memo-eSR*, the geometric and exponen-
tial SimRank* algorithms via partial sums memoization in
Sect. 6; (e) psum-SR [24] and psum-PR [36], the SimRank
and P-Rank algorithms via partial sumsmemoization; and (f)
mtx-SR [19], a matrix-based method that computes Li et al.’s
SimRank using singular value decomposition.
Test queries For similarity ranking evaluation, we randomly
select 500 query nodes from each dataset, based on the fol-
lowing: For each graph, we first sort all nodes in order of their
importance (measured by PageRank) into 5 groups, and then
randomly choose 100 nodes from each group, aiming to guar-
antee that the selected nodes can systematically cover a broad
range of all possible queries.
Parameters We set the following default parameters: (a)C =
0.6, the decay factor, as previously used in [12]. (b) For all
the iterative models, we set the number of iterations K = 20
by default, to guarantee a high accuracy of C K = 0.621 ≤
0.0000219. (c) For KM-SR, we follow the suggestion in [16],
and set three parameters T = 11, R = 100, L = 3, to ensure
a worst-case error ε = CT/(1 − C) ≈ 0.01. (d) For SL-
SR, we follow Theorem 1 in [27], and set εd = 0.003 and
θ = 0.0001, which guarantees its maximum error ε < 0.01.
We also set δd = 1/n2, which ensures that the preprocessing
of SL-SR to achieve at least (1− 1/n) probability.
Effectiveness metrics To evaluate semantics and similarity
ranking, we adopt the following three metrics: Kendall’s τ ,
Spearman’s ρ, andNormalized Discounted Cumulative Gain
(NDCG). Please refer to “Appendix E.2”.
Ground truth (a) To assess similar authors on DBLP, we
invite 20 experts from database and data mining areas to ver-
ify the correctness of retrieved co-authorships. The experts
have a strong research profile of international stature along
with a sustained record of significant and world leading pub-
lications in databases/data mining areas, e.g., ACM TODS,
VLDBJ, IEEE TKDE, ACM TKDD, SIGMOD, SIGKDD,
PVLDB, ICDE. We selected the outstanding researchers

with the combined expertise of data science from all over
the world (e.g., USA, Europe, Australia, Asia) according to
their Google Scholar profile with the minimum thresholds
of #of citations > 1000 and H-index > 20. Therefore, the
selected scholars are familiar with their research domains,
and canwell evaluate relevant authors in data science through
experience. They will also refer to “Co-Author Path” in
Microsoft Academic Search4 to see “separations” between
any two collaborators.

(b) To evaluate similar papers on CitH, we hire 15
researchers from the physical department to judge the “true”
relevance of retrieved co-citations. The scholars have a
proven track record of excellence in High Energy Physics
research over the recent five years, with publications in
e.g., Physical Review D, Nuclear Physics B, Journal of High
Energy Physics, and Physics Letters B. We selected these
scholars based on their productivity (number of high-quality
publications) and research impact (number of citations)
based on the Web of Science Core Collection (Thomson
Reuters). These consistent publications in the high-impact
journals indicate that the selected researchers have better
knowledge in High Energy Physics research to well evaluate
the similarities of papers in e-print arXiv. Their assessment
may hinge on paper contents, H-index, and the number of
citations in www.ScienceDirect.com. For all the ground
truth, the results are rendered by a majority vote of feed-
backs.

We use a computer powered by Intel Core i7-6700
3.40GHz CPU and 64GB RAM on Windows 8.

9.2 Experimental results

9.2.1 Quantitative results on semantic effectiveness

We first run the algorithms on directed CitH and undirected
DBLP. By randomly selecting 500 queries, we evaluate

4 http://academic.research.microsoft.com/VisualExplorer.

123

http://academic.research.microsoft.com/VisualExplorer

W. Yu et al.

eSR* gSR* RWR/ASCOS JSR/LSR PR

Kendall Spearman NDCG0

0.2

0.4

0.6

0.8

1

A
cc
ur
ac
y

CitH

Kendall Spearman NDCG0.6

0.7

0.8

0.9

1

A
cc
ur
ac
y

DBLP (D02)

(a) Semantic Effectiveness on Real Data

completely dissimilar partially missing

JS
R

LS
R
RW

R

AS
CO
S

0
20
40
60
80

100
97.9 97.9 94.1 94.1

%
of

“z
er
o-
si
m
ila

ri
ty
” CitH

JS
R

LS
R

RW
R

AS
CO
S

0
20
40
60
80
100

99.9 99.9 100 100

%
of

“z
er
o-
si
m
ila

ri
ty
”

DBLP (D02)

(b) % of “Zero-Similarity” Pairs on Real Data

Fig. 6 Quantitative results of semantic effectiveness on real datasets

the average semantic accuracy for each algorithm via three
metrics (Kendall, Spearman, NDCG). Figure 6a depicts the
quantitative results. (1) On CitH, memo-gSR* and memo-
eSR* have higher accuracy (e.g., Spearman’s ρ ≈ 0.91) than
psum-SR (0.29),RWR (0.12) and psum-PR (0.42) on average,
i.e., the semantics of SimRank* is effective. This is because
SimRank* considers all in-link paths for assessing similarity,
whereas SimRank and RWR, respectively, counts only lim-
ited symmetric and unidirectional paths. (2) On DBLP, the
accuracy of RWR is the same as memo-gSR* and memo-
eSR*, due to the undirectedness of DBLP. This tells us
that, regardless of edge directions, both SimRank* and RWR
count the path of all lengths, as opposed to SimRank con-
sidering only the even-length paths. Likewise, psum-PR and
psum-SR produce the same results on undirected DBLP. (3)
On each dataset, memo-gSR* and memo-eSR* keep almost
the same accuracy, implying that the relative order of the
geometric SimRank* is well maintained by its exponential
counterpart.

Figure 6b shows the “zero-similarity” issues commonly
exist in real graphs for JSR, LSR, RWR, ASCOS. (1) On CitH,
∼ 97.9%node-pairs have “zero-SimRank” problems for both
JSR and LSR, among which 19.2% pairs (resp. 78.7%) have
“completely dissimilar” (resp. “partially missing”) issues
whose similarities are 0s (resp. not 0s but neglect the contri-
butions of asymmetric paths). Similarly, on CitH, ∼ 94.1%
pairs have “zero-similarity” issues for both RWR and ASCOS,
highlighting the seriousness of this problem. (2) On D09,
almost 99.99% pairs have “partially missing zero-similarity”
issues for each similarity measure despite very little “com-
pletely dissimilar” issues, due to the undirectness of DBLP.
(3) The amount of “zero-similarity” pairs evaluated by JSR
(resp. RWR) is the same as that by LSR (resp. ASCOS). This
is consistent with our analysis in Corollary 2.

9.2.2 Qualitative case studies on semantics

Figure 7 presents the case study of qualitative results for
top-k similarity ranking w.r.t. queries Q1–Q4 on DBLP
D09 (2009–2011). For example, Q1 finds the most simi-

lar co-authors of Prof. Jennifer Widom, by using different
similarity measures, e.g., SimRank* (memo-gSR*, memo-
eSR*), Random Walk with Restart (RWR), SimRank without
adding self-loops (psum-SR), and SimRank by adding self-
loops (self-loop). We observe that (1) RWR andmemo-gSR*
produce the same results on DBLP, which is due to the
undirectedness of DBLP, as expected. (2) memo-gSR* and
memo-eSR* also yield the same results for our top-k sim-
ilarity search, showing the relative ranking preservation of
memo-eSR* w.r.t. memo-gSR*. (3) Some close co-authors
of Prof. Jennifer Widom that are ranked lower undesir-
ably by psum-SR (as shown in the brackets of the gray
cells) can be well identified by memo-gSR*, memo-eSR*,
and RWR. For instance, “Anish Das Sarma”, who has many
collaborative publications with Prof. Jennifer Widom dur-
ing 2009–2011, is ranked among top 5 by memo-gSR*
and memo-eSR*, but not top ranked by psum-SR and self-
loop. This is because SimRank ignores the contributions of
asymmetric in-link paths (i.e., the paths of odd lengths in
undirected graphs), whereas SimRank* considers the contri-
butions of all in-link paths.As a result,many close co-authors
(with high degrees of one-edge connection) of Prof. Jen-
nifer Widom (e.g., Dr. Anish Das Sarma) are missed by
SimRank, but can be found effectively by SimRank*. The
disparity of ranking in gray cells shows that memo-gSR*,
memo-eSR*,RWR can perfectly resolve the “zero-similarity”
issue of psum-SR on undirected graphs. (4) self-loop is
more effective than SimRank, but sometimes less effective
than SimRank*. For example in Q1, “Huacheng C. Ying”
and “Qi Su” are identified by both SimRank* and self-
loop, but they are ignored by SimRank. However, “Anish
Das Sarma”, Prof. Jennifer Widom’s student, is not cap-
tured by SimRank or self-loop. “Beverly Yang” is ranked
at 6th by self-loop, but he has no collaborative publica-
tions with Prof. Jennifer Widom on DBLP (2009–2011).
This is due to the over-counting problem of self-loop that
will lead to excessive length weight coefficients counter-
intuitively assigned to the pair (“Beverly Yang” and “Prof.
Jennifer Widom”). In some cases, self-loop achieves the
ranking results as good as SimRank*. For instance in Q4,

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

Fig. 7 Case study 1: qualitative similarity rankings for retrieving relevant co-authors on D09 (2009–2011)

Fig. 8 Case study 2: qualitative similarity rankings for retrieving relevant articles on CitH

the top-4 most similar author-pairs in D09 (2009–2011) by
SimRank* and self-loop are the same, both ofwhich aremore
reliable than SimRank as they do not have “zero-SimRank”
issues.

We next provide some qualitative results on the directed
graph CitH. The similarity ranking results w.r.t. three paper
queries are shown inFig. 8. It can benoted that (1) for directed
CitH, RWR and memo-gSR* have substantial differences.
For the first query Q1, the top-4 ranking results identified by
RWR are not the most relevant articles w.r.t. the query arti-
cle. This is because RWR considers only unidirectional paths

between two nodes, thus limiting its utility for find sensible
papers, whereas SimRank* considers all in-link paths. Other
results on SimRank* and SimRank are analogous to those
on DBLP. (2) The semantics of SimRank* is more effective
than those of SimRank and self-loop. For example in Q1,
consider the twomost similar articles retrieved by SimRank*
(i.e., “Probing Solitons in Brane Worlds” and “Localization
of Bulk Form Fields on Dilatonic Domain Wall” highlighted
in the light gray cells). SimRank captures only the first one,
and self-loop only the second one, but they are unable to
capture both. The reason is that SimRankwill neglect the con-

123

W. Yu et al.

Fig. 9 Scalability of ss-eSR*
and ss-gSR* on real datasets
(K = 20)

ss-eSR* ss-gSR* SL-SR KM-SR RWR memo-gSR* psum-SR mtx-SR

D06 D09 D02 CitH Email WebB WikT SocL UK05 IT04
10−3

10−1

101

103

105

El
ap

se
d
T
im

e
(s
ec
)

D06 D09 D02 CitH Email WebB WikT SocL UK05 IT04

106

108

1010

M
em

or
y
(b
yt
es
)

Data ss-eSR*
SL-SR KM-SR

Index Query Index Query
(sec) (sec) (sec) (sec) (sec)

D06 0.019 26.8 0.0032 8.2 0.054
D09 0.021 28.5 0.0034 8.6 0.058
D02 0.024 32.1 0.0041 9.1 0.065
CitH 0.140 72.1 0.0082 11.2 0.108
Email 0.315 342.5 0.0983 98.6 0.780
WebB 2.451 502.7 0.1127 102.5 0.867
WikT 5.205 7280.5 0.8140 980.5 7.805
SocL 122.247 9851.8 1.0205 3601.8 80.153
UK05 337.233 – – 8881.5 130.246
IT04 396.295 – – 10915.7 144.960

Fig. 10 ss-eSR* versus SL-SR and KM-SR

tributions of asymmetric in-link paths,whereas self-loopwill
overcount the contributions of symmetric in-link paths. Both
of them will produce the biased similarity ranking results.
In contrast, SimRank* retrieves the most appropriate arti-
cles by considering both symmetric and asymmetric in-link
paths with reasonable weighted coefficients, whose results
are better than SimRank and self-loop.

9.2.3 Scalability of ss-eSR* and ss-gSR*

To evaluate the scalability of SimRank* on large graphs,
we compare the computational time and memory space of
ss-eSR* and ss-gSR* with other algorithms on various real
datasets with m ranging from 17K to 1.15G. We randomly
select 20 queries, Q, from each dataset, and retrieve all the
similarities {s(∗, q)}q∈Q . Note that our query selection is
based on its node PageRank value so that Q can cover a board
range of queries. Figure 9 depicts the results for K = 20.

We notice that (1) memo-gSR*, psum-SR, and mtx-SR
only survive on small-scale datasets (e.g., DBLP and CitH).
For large-scale datasets, ss-eSR*, ss-gSR*, KM-SR, RWR scale
well. The in-memory version of KM-SR will explode on
billion-scale UK05 and IT04, due to its huge space cost for

indexing. (2) On each dataset, ss-eSR* and RWR are faster
than the other algorithms as they only require linear time
w.r.t. the number of edges and K . To attain the same accu-
racy, the query time of SL-SR and KM-SR is much faster than
ss-eSR* (see Fig. 10), but the total time of SL-SR and KM-
SR is 6–9× larger than that of ss-eSR* and ss-gSR*. This is
because SL-SR and KM-SR spend a large amount of time build-
ing index for preprocessing (see Fig. 10), whereas ss-eSR*
and ss-gSR* are non-indexing algorithms. Thus, when the
number of queries is not large, ss-eSR* and ss-gSR* are more
time-efficient. When the number of queries becomes large,
e.g., |Q| = n, the total time of SL-SR and KM-SR can be
faster than ss-eSR* and ss-gSR*, but are slower than memo-
eSR* and memo-gSR* algorithms. (3) On small datasets
(e.g., DBLP and CitH) when memo-gSR* and psum-SR do
not fail, ss-eSR* and ss-gSR* are 2.5–3 orders of magnitude
faster than memo-gSR* and psum-SR. The reason is that,
given queries, ss-eSR* and ss-gSR* can compute similarities
on an as-needed basis, as opposed tomemo-gSR* and psum-
SR that are query-independent and always output all-pairs
similarities. (4) The memory space of ss-eSR* and ss-gSR*
is 2–3 orders of magnitude less than that of memo-gSR* and
psum-SR, highlighting its scalability on billion-scale graphs.
(5) The memory of KM-SR and RWR is comparable to that
of ss-eSR* and ss-gSR*, all of which have less space than
SL-SR. This is consistent with our space complexity analysis.
The extra memory of SL-SR is due to its storage for indexing
structures.

9.2.4 Varying |Q| for ss-gSR* and ss-eSR*

To evaluate the effect of query size |Q| on the computa-
tional efficiency of ss-eSR* and ss-gSR*, we fix K = 20 and
vary |Q| from 200 to 600 on D02 and CitH, and compare
the computation time and memory space of ss-gSR* with
memo-gSR*, and ss-eSR* with memo-eSR*. The results on
D02 and CitH are shown in Figs. 11 and 12, respectively.
Since memo-gSR* will fail on large datasets, we vary |Q|
from 10 to 200 on WebB, WikT, SocL, and show the CPU

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

ss-eSR* memo-eSR* ss-gSR* memo-gSR*

200 400 600
0

100

200

300

of Queries |Q|

E
la
ps
ed

T
im

e
(s
ec
)

200 400 600

106

108

1010

of Queries |Q|

M
em

or
y
(b
yt
es
)

Fig. 11 Varying |Q| on D02 (K = 20)

ss-eSR* memo-eSR* ss-gSR* memo-gSR*

200 400 600101

102

103

104

of Queries |Q|

E
la
ps
ed

T
im

e
(s
ec
)

200 400 600106

108

1010

of Queries |Q|

M
em

or
y
(b
yt
es
)

Fig. 12 Varying |Q| on CitH (K = 20)

|Q| = 10 |Q| = 50 |Q| = 100 |Q| = 200

WebB WikT SocL
101

102

103

104

105

E
la
ps
ed

T
im

e
(s
ec
)

WebB WikT SocL
106

108

1010

M
em

or
y
(b
yt
es
)

Fig. 13 Varying |Q| for ss-gSR* on Large Datasets

|Q| = 10 |Q| = 50 |Q| = 100 |Q| = 200

WebB WikT SocL
1

101
102
103
104
105

E
la
ps
ed

T
im

e
(s
ec
)

WebB WikT SocL
106

108

1010

M
em

or
y
(b
yt
es
)

Fig. 14 Varying |Q| for ss-eSR* on Large Datasets

time and memory of ss-gSR* and ss-eSR* in Figs. 13 and 14,
respectively.

From the results, we notice that (1) when |Q| grows
from 200 to 600, the time of ss-eSR* and ss-gSR* increase
linearly on both D02 and CitH, whereas the time of memo-
eSR* and memo-gSR* are insensitive to |Q|, remaining at
constant time on D02 and CitH, respectively. This con-
forms to our expectation as ss-eSR* and ss-gSR* adopt
novel iterative models that provide on-demand retrieval
w.r.t. given queries. In contrast, memo-eSR* and memo-

gSR* are query-independent algorithms which have to assess
all-pairs similarities simultaneously even if one wishes only
a fraction of pairs of similarities. (2) As |Q| increases on
D02 and CitH, the memory of all the algorithms remains
unaltered, insensitive to the query size. The reason is that,
for each single-source query q, ss-gSR* will immediately
release the auxiliary vector m(j−1)

i−1 when it has been used
twice for iteratively generating the Pascal’s triangle pattern;
after each query q, ss-gSR* will also release the memory to
start with a new retrieval w.r.t. another single-source query
q ′. For ss-eSR*, in each query q, only one auxiliary vector
needsmemoization after each iteration. Thememory space of
memo-eSR* andmemo-gSR* is always dominated by O(n2)

to store all-pairs similarities regardless of query size, and
thereby remains constant as |Q| varies. (3) On large datasets
(e.g., WebB, WikT, SocL) in Figs. 13 and 14, when |Q|
varies from 10 to 200, the time and memory of ss-eSR* and
ss-gSR* exhibit a similar tendency to those on small datasets
(D02 and CitH), indicating that ss-eSR* and ss-gSR* scale
well to both the graph size and the query size |Q|.

9.2.5 Varying K for ss-gSR* and ss-eSR*

Finally, we evaluate the effect of the number of iterations,
K , on the computational time and memory of ss-gSR* and
ss-eSR*. Fixing the query size |Q| = 100, we vary K from 10
to 40 on three large datasets (WebB, WikT, SocL), respec-
tively. The results are shown in Figs. 15 and 16. It can be
discerned that (1) given |Q| = 100, when K grows, the
computational time of both ss-gSR* and ss-eSR* increases
on every dataset. ss-gSR* increases dramatically, whereas
ss-eSR* grows mildly. This is in accord with our time com-
plexity bound analysis in Sect. 7, inwhich the time of ss-gSR*
is quadratic w.r.t. K , whereas the time of ss-eSR* is lin-
ear w.r.t. K . (2) For any fixed |Q|, the memory of ss-gSR*
increases mildly as K grows, but the memory of ss-eSR*
remains unchanged as K increases. This is because ss-gSR*
requires O(K n) memory for storing (K + 1) auxiliary vec-
tors {m(0)

K+1, . . . ,m
(K)
K+1} to iteratively retrieve SimRank*,

whereas ss-eSR* needs O(n) memory to store one auxiliary
vector from the previous iteration, which is independent of
K . This agrees well with our space complexity analysis of
ss-gSR* in Theorem 9, and ss-eSR* in Theorem 11.

10 Related work

10.1 Link-based similarity measures

One of the most attractive link-based similarity measures
is SimRank, proposed by Jeh and Widom [12]. The recur-
sive nature of SimRank allows two nodes to be similar

123

W. Yu et al.

K = 10 K = 20 K = 30 K = 40

WebB WikT SocL
1

101

102

103

104

|Q| = 100

T
im

e
pe

r
Q
ue

ry
(s
ec
)

WebB WikT SocL
107

108

109

1010

|Q| = 100

M
em

or
y
(b
yt
es
)

Fig. 15 Varying K for ss-gSR* on Large Datasets

K = 10 K = 20 K = 30 K = 40

WebB WikT SocL
1

101

102

103

|Q| = 100

T
im

e
pe

r
Q
ue

ry
(s
ec
)

WebB WikT SocL
106

108

1010

|Q| = 100

M
em

or
y
(b
yt
es
)

Fig. 16 Varying K for ss-eSR* on Large Datasets

even without common in-neighbors sharing, which resem-
bles PageRank [3] that recursively assigns a score for node
ranking. However, SimRank implies some unsatisfactory
traits. One limitation is that “the similarity of two nodes
will decrease as the number of their common in-neighbors
increases”. To address this problem, many excellent meth-
ods have been proposed, leading to several SimRank variant
models. For example, Fogaras and Rácz [8] introduced P-
SimRank. They (1) incorporated Jaccard coefficients, and (2)
interpreted s(a, b) as the probability that two random surfers,
starting from a and b, will meet at a node. Antonellis et al. [1]
proposed SimRank++, by adding an evidenceweight to com-
pensate for the cardinality of in-neighbor matching. Lin
et al. [22] presented MatchSim, which refines SimRank with
maximum neighborhood matching. Jin et al. [14] proposed
RoleSim that generalizes Jaccard coefficients to ensure auto-
morphic equivalence for SimRank.Yu andMcCann et al. [34]
introduce SimRank#, a high-quality SimRank-based model
that extends cosine similarity measure to aggregate pairs of
multi-hop paths.

Another limitation of SimRank is the “zero-similarity”
problem that “s(a, b) = 0 if there are no nodes having equal
distance to both a and b”. A special case of this problem
was observed by Zhao et al. [36, Example 1.2]. They pro-
posed P-Rank by taking both in- and out-links into account.
P-Rank indeed can reduce the number of pairs of nodes with
counter-intuitive zero similarities. However, if there are nei-
ther equidistant in-link paths nor equidistant out-link paths
from two nodes a and b, the similarity of (a, b) is still
zero. Our work is different from [36] in that (1) we show
that the “zero-SimRank” problem is not caused by the igno-
rance of out-links in SimRank, and (2) we circumvent the

“zero-similarity” issue by traversing more incoming paths
of node-pairs that are neglected by the original SimRank.
Recently, Chen and Giles [7] also proposed a similarity
model, ASCOS++, to address the SimRank issue that “if
the length of a path between two nodes is an odd number,
this path makes no contribution to the SimRank score”. The
issue is a special case of our “zero-similarity” issue. It differs
from our work in that [7] provided a sufficient condition for
s(a, b) = 0, whereas we give a sufficient and necessary con-
dition for s(a, b) = 0. That is, “the odd-length path between
two nodes a and b” given by [7] is not the only condition that
will lead to s(a, b) = 0. Another condition that “the even-
length in-linked paths between nodes a and b whose ‘source’
node is not in the center of the path” also leads to s(a, b) = 0.
Therefore, ASCOS++ only partially resolved our “zero-
similarity” issue of SimRank, as we discussed in Sect. 3.5.

There has also been research on link-based similarity
(e.g., [4,18,28–30]). LinkClus [30] adopted a hierarchical
structure, called SimTree, for clustering multi-type objects.
Blondel et al. [4] proposed an appealing measure to quan-
tify graph-to-graph similarity. SimFusion [29] exploited a
reinforcement assumption to assess similarities of multi-type
objects in a heterogenous domain, as opposed to Sim-
Rank focusing solely on intra-type objects in a homogenous
domain. Tong et al. [28] suggested Random Walk with
Restart (RWR) for assessing node proximities, which is an
excellent extension of Personalized PageRank (PPR). Leicht
et al. [18] extend RWR by incorporating independent and
sensible coefficients. However, RWR and its variants (PPR
and [18]) also imply SimRank-like “zero-similarity” issues,
as discussed in Sect. 3.4. The recent work of [16,34] has
showed that Jeh and Widom’s SimRank model [12] and Li
et al. ’s SimRank model [19] are different. In the previous
conference version [31], we only proved the existence of
“zero-similarity” issues in Li et al.’s SimRank model [19]. In
this work, we show further that “zero-similarity” issues also
exist in Jeh and Widom’s SimRank model [12]. Moreover,
we prove in Sect. 3.3 that the affected pairs of nodes in these
two SimRank models are exactly the same.

10.2 Optimizationmethods for computing
similarities

The computational overheads of SimRank-based similarity
arise from its recursive nature. To reduce its computational
complexity, a number of efficient techniques have been pro-
posed to optimize SimRank computation, including all-pairs
search, single-source search, single-pair search, and partial-
pairs search.

For all-pairs search, Lizorkin et al. [24] focused on Sim-
Rank iterative computation and proposed three excellent
optimization approaches (i.e., essential node-pair selection,
partial sumsmemoization, and threshold-sieved similarities).

123

SimRank*: effective and scalable pairwise similarity search based on graph topology

These substantially speed up SimRank computation from
O(K d2n2) to O(K nm) time. Later, Yu et al. [32] used amini
spanning tree to find the topological sort for fine-grained par-
tial sums sharing, which improved all-pairs SimRank search
further to O(K d ′n2) time (with d ′ ≤ d). However, both
methods require O(n2) memory to output all-pairs results at
each iteration, which are impractical to large-scale graphs. Li
et al. [19] developed a SVD-based SimRank matrix comput-
ingmodel to approximateSimRank results, yielding O(r4n2)

time, where r (≤ n) is the targeted rank of SVD. However,
it does not always speed up the computation when r is large
for achieving a high accuracy. In contrast, our SimRank*
model is fast and memory-efficient. It scales well on billion-
edge graphs while tallying even more paths than SimRank to
enrich semantics.

For single-source search, Lee et al. [17] first proposed a
pioneering model, TopSim, that used a Monte Carlo method
to retrieve top-k SimRank pairs in O(dk) time. To trade
accuracy for speed, they also presented two approximate
techniques based on truncated random walk and prioritiz-
ing propagation, respectively. Later, Fujiwara et al. [10]
presented SimMat, which (1) retrieves the top-k similar
nodes based on a Sylvester equation, and (2) prunes unnec-
essary search based on the Cauchy-Schwarz inequality.
Kusumoto et al. [16] introduced a “linear” recursive for-
mula for SimRank, based on which they establish a novel
random-walk-based method for scalable top-k single-source
similarity search. Tian and Xiao [27] designed an efficient
index structure, SLING, for SimRank search that guaran-
tees the worst-case error in each SimRank score returned.
Recently, Shao et al. [25] and Jiang et al. [13] devised TSF
and READS indexing schemes, respectively, to efficiently
handle top-k SimRank search over dynamic graphs. Liu
et al. [23] presented ProbeSim, an index-free solution for
dynamic single-source and top-k SimRankquerieswith prov-
able accuracy guarantees.

There has also been other work on SimRank search. Fog-
aras and Rácz [9] proposed P-SimRank for a single-pair
SimRank retrieval. Li et al. [20] developed CloudWalker, a
parallel algorithm for large-scale SimRank search on Spark
with ten machines. Tao et al. [26] proposed an excellent
two-stage way for the top-k SimRank-based similarity join.
Zhang et al. [35] conducted comprehensive experiments
and compare many existing SimRank algorithms in a uni-
fied environment. Their empirical study showed that, despite
recent research efforts, the computational time and precision
of known algorithms have still much space for improvement.

11 Conclusions

In this article, we have proposed SimRank*, an effective
and scalable similarity model, for effectively assessing link-

based similarities. In contrast to SimRank that considers
only the contributions of symmetric in-link paths, SimRank*
tallies the contributions of all in-link paths between two
nodes, thus resolving the “zero-SimRank” issue for semantic
richness. We have also converted the series form of Sim-
Rank* into two elegant forms: the geometric SimRank*
and its exponential variant, both of which look even sim-
pler than SimRank, yet without suffering from increased
computational cost. To speedup all-pairs SimRank* search,
we have devised a fine-grained memoization strategy via
edge concentration, with an efficient algorithm speeding up
SimRank* computation from O(K nm) to O(K nm̃) time,
where m̃ is generally much smaller than m. However, the
memory of this algorithm is still O(n2), which is not appli-
cable to sizable graphs. To scale SimRank* on billion-edge
graphs,wepropose twomemory-efficient single-source algo-
rithms, ss-gSR* for geometric SimRank* search, and ss-eSR*
for exponential SimRank* search without any loss of accu-
racy. ss-gSR* utilizes a Pascal’s triangle pattern that requires
O(K 2m̃) time and O(K n+m̃)memory to iteratively retrieve
SimRank* similarities between all n nodes and a given query
on an as-needed basis, whereas ss-eSR* employs a novel iter-
ative model that entails only O(K m̃) time and O(n + m̃)

memory, where m̃ � n2. We also compare SimRank* with
another alternative remedy for SimRank that adds self-loops
on each node, and vindicate that SimRank* is more effica-
cious. Our experimental results on real and synthetic data
demonstrate the richer semantics, higher computational effi-
ciency, and scalability of SimRank* on billion-scale graphs.

Acknowledgements The work is supported by NSFC61702560,
NSFC61672235, ARC DP170101628, and DP180103096.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Antonellis, I., Molina, H.G., Chang, C.: SimRank++: query rewrit-
ing through link analysis of the click graph. PVLDB 1(1), 408–421
(2008)

2. Benczúr, A.A., Csalogány, K., Sarlós, T.: Link-based similarity
search to fight web spam. AIRWeb, 9–16 (2006)

3. Berkhin, P.: Survey: a survey on PageRank computing. Internet
Math 2(1), 73–120 (2005)

4. Blondel, V.D., Gajardo, A., Heymans, M., Senellart, P., Dooren,
P.V.: A measure of similarity between graph vertices: applications
to synonym extraction and web searching. SIAM Rev. 46(4), 647–
666 (2004)

5. Brualdi, R., Cvetkovic, D.: A Combinatorial Approach to Matrix
Theory and Its Applications. Discrete Mathematics and Its Appli-
cations. Taylor & Francis, Abingdon (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

W. Yu et al.

6. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to
web graph compressionwith communities.WSDM, 95–106 (2008)

7. Chen, H., Giles, C.L.: ASCOS++: an asymmetric similarity mea-
sure for weighted networks to address the problem of SimRank.
TKDD 10(2), 15:1–15:26 (2015)

8. Fogaras, D., Rácz, B.: Scaling link-based similarity search.WWW,
641–650 (2005)

9. Fogaras, D., Rácz, B.: Practical algorithms and lower bounds for
similarity search in massive graphs. IEEE Trans. Knowl. Data Eng.
19, 585–598 (2007)

10. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Onizuka, M.: Efficient
search algorithm for SimRank. ICDE, 589–600 (2013)

11. He, G., Feng, H., Li, C., Chen, H.: Parallel SimRank computation
on large graphs with iterative aggregation. KDD, 543–552 (2010)

12. Jeh, G.,Widom, J.: SimRank: Ameasure of structural-context sim-
ilarity. KDD, 538–543 (2002)

13. Jiang, M., Fu, A.W., Wong, R.C., Wang, K.: READS: a ran-
dom walk approach for efficient and accurate dynamic SimRank.
PVLDB 10(9), 937–948 (2017)

14. Jin, R., Lee, V.E., Hong, H.: Axiomatic ranking of network role
similarity. KDD, 922–930 (2011)

15. Jung, J., Shin, K., Sael, L., Kang, U.: Random walk with restart on
large graphs using block elimination. ACM Trans. Database Syst.
41(2), 12:1–12:43 (2016)

16. Kusumoto, M., Maehara, T., Kawarabayashi, K.: Scalable similar-
ity search for SimRank. In: SIGMOD Conference, pp. 325–336
(2014)

17. Lee, P., Lakshmanan,L.V.S.,Yu, J.X.:On top-k structural similarity
search. ICDE, 774–785 (2012)

18. Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in net-
works. Phys. Rev. E 73(2), 026120 (2006)

19. Li, C., Han, J., He, G., Jin, X., Sun, Y., Yu, Y., Wu, T.: Fast com-
putation of SimRank for static and dynamic information networks.
EDBT, 465–476 (2010)

20. Li, Z., Fang, Y., Liu, Q., Cheng, J., Cheng, R., Lui, J.C.S.: Walking
in the cloud: parallel SimRank at scale. PVLDB 9(1), 24–35 (2015)

21. Lin, X.: On the computational complexity of edge concentration.
Discrete Appl. Math. 101(1–3), 197–205 (2000)

22. Lin, Z., Lyu, M.R., King, I.: MatchSim: a novel similarity mea-
sure based onmaximum neighborhoodmatching. Knowl. Inf. Syst.
32(1), 141–166 (2012)

23. Liu, Y., Zheng, B., He, X., Wei, Z., Xiao, X., Zheng, K., Lu, J.:
ProbeSim: scalable single-source and top-k SimRankcomputations
on dynamic graphs. PVLDB 11(1), 14–26 (2017)

24. Lizorkin, D., Velikhov, P., Grinev, M.N., Turdakov, D.: Accuracy
estimate and optimization techniques for SimRank computation.
PVLDB 1(1), 408–421 (2008)

25. Shao, Y., Cui, B., Chen, L., Liu, M., Xie, X.: An efficient similarity
search framework forSimRankover large dynamicgraphs. PVLDB
8(8), 838–849 (2015)

26. Tao, W., Yu, M., Li, G.: Efficient top-k SimRank-based similarity
join. PVLDB 8(3), 317–328 (2014)

27. Tian, B., Xiao, X.: SLING: a near-optimal index structure for Sim-
Rank. In: SIGMOD Conference, pp. 1859–1874 (2016)

28. Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart
and its applications. ICDM, 613–622 (2006)

29. Xi,W., Fox, E.A., Fan,W., Zhang, B., Chen, Z., Yan, J., Zhuang,D.:
SimFusion: measuring similarity using unified relationship matrix.
SIGIR, 130–137 (2005)

30. Yin, X., Han, J., Yu, P.S.: LinkClus: efficient clustering via hetero-
geneous semantic links. VLDB, 427–438 (2006)

31. Yu, W., Lin, X., Zhang, W., Chang, L., Pei, J.: More is simpler:
effectively and efficiently assessing node-pair similarities based
on hyperlinks. PVLDB, 13–24 (2014)

32. Yu, W., Lin, X., Zhang, W., McCann, J.A.: Fast all-pairs SimRank
assessment on large graphs and bipartite domains. IEEE Trans.
Knowl. Data Eng. 27(7), 1810–1823 (2015)

33. Yu, W., McCann, J.A.: Efficient partial-pairs SimRank search for
large networks. PVLDB 8(5), 569–580 (2015)

34. Yu, W., McCann, J.A.: High quality graph-based similarity
retrieval. SIGIR, 83–92 (2015)

35. Zhang, Z., Shao, Y., Cui, B., Zhang, C.: An experimental eval-
uation of SimRank-based similarity search algorithms. PVLDB
10(5), 601–612 (2017)

36. Zhao, P., Han, J., Sun, Y.: P-Rank: a comprehensive structural simi-
larity measure over information networks. CIKM, 553–562 (2009)

37. Zheng, W., Zou, L., Feng, Y., Chen, L., Zhao, D.: Efficient
SimRank-based similarity join over large graphs. PVLDB 6(7),
493–504 (2013)

38. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on struc-
tural/attribute similarities. PVLDB 2(1), 718–729 (2009)

39. Zhu, R., Zou, Z., Li, J.: SimRank computation on uncertain graphs.
ICDE, 565–576 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	SimRank*: effective and scalable pairwise similarity search based on graph topology
	Abstract
	1 Introduction
	1.1 Main contributions

	2 Preliminaries
	2.1 Jeh and Widom's SimRank model
	2.2 Li et al. 's SimRank model

	3 ``Zero-similarity'' problem
	3.1 Counting in-link paths
	3.2 ``Zero-similarity'' issue in Jeh and Widom's model
	3.3 ``Zero-similarity'' issue in Li et al. 's SimRank
	3.4 ``Zero-similarity'' issue in RWR
	3.5 ``Zero-similarity'' issue in ASCOS++

	4 SimRank*: a remedy for SimRank
	4.1 Geometric series form of SimRank*
	4.2 Weighted factors of two types
	4.3 Some extensions of SimRank* beyond counting in-link paths only
	4.4 Convergence of SimRank*
	4.5 Exponential series form of SimRank* variant

	5 Recursive and closed forms of SimRank*
	5.1 Recursive form of geometric SimRank*
	5.2 Closed form of exponential SimRank*

	6 Accelerate SimRank* computation
	6.1 Fine-grained memoization
	6.2 Induced bigraph
	6.3 Biclique compression via edge concentration
	6.4 Exponential SimRank* optimization

	7 Linearize SimRank* memory
	7.1 Single-source geometric SimRank*
	7.2 Single-source exponential SimRank*

	8 Comparison with ``adding self-loops''
	9 Experimental evaluation
	9.1 Experimental settings
	9.2 Experimental results
	9.2.1 Quantitative results on semantic effectiveness
	9.2.2 Qualitative case studies on semantics
	9.2.3 Scalability of ss-eSR* and ss-gSR*
	9.2.4 Varying |Q| for ss-gSR* and ss-eSR*
	9.2.5 Varying K for ss-gSR* and ss-eSR*

	10 Related work
	10.1 Link-based similarity measures
	10.2 Optimization methods for computing similarities

	11 Conclusions
	Acknowledgements
	References

