609 research outputs found
Plasma turbulence at ion scales: a comparison between PIC and Eulerian hybrid-kinetic approaches
Kinetic-range turbulence in magnetized plasmas and, in particular, in the
context of solar-wind turbulence has been extensively investigated over the
past decades via numerical simulations. Among others, one of the widely adopted
reduced plasma model is the so-called hybrid-kinetic model, where the ions are
fully kinetic and the electrons are treated as a neutralizing (inertial or
massless) fluid. Within the same model, different numerical methods and/or
approaches to turbulence development have been employed. In the present work,
we present a comparison between two-dimensional hybrid-kinetic simulations of
plasma turbulence obtained with two complementary approaches spanning about two
decades in wavenumber - from MHD inertial range to scales well below the ion
gyroradius - with a state-of-the-art accuracy. One approach employs hybrid
particle-in-cell (HPIC) simulations of freely-decaying Alfv\'enic turbulence,
whereas the other consists of Eulerian hybrid Vlasov-Maxwell (HVM) simulations
of turbulence continuously driven with partially-compressible large-scale
fluctuations. Despite the completely different initialization and
injection/drive at large scales, the same properties of turbulent fluctuations
at are observed. The system indeed self-consistently
"reprocesses" the turbulent fluctuations while they are cascading towards
smaller and smaller scales, in a way which actually depends on the plasma beta
parameter. Small-scale turbulence has been found to be mainly populated by
kinetic Alfv\'en wave (KAW) fluctuations for , whereas KAW
fluctuations are only sub-dominant for low-.Comment: 18 pages, 4 figures, accepted for publication in J. Plasma Phys.
(Collection: "The Vlasov equation: from space to laboratory plasma physics"
Timing mirror structures observed by Cluster with a magnetosheath flow model
The evolution of structures associated with mirror modes during their flow in
the Earth's magnetosheath is studied. The fact that the related magnetic
fluctuations can take distinct shapes, from deep holes to high peaks, has
been assessed in previous works on the observational, modeling and numerical
points of view. In this paper we present an analytical model for the flow
lines and velocity magnitude inside the magnetosheath. This model is used to
interpret almost 10 years of Cluster observations of mirror structures: by
back tracking each isolated observation to the shock, the "age", or flow
time, of these structures is determined together with the geometry of the
shock. Using this flow time the evolutionary path of the structures may be
studied with respect to different quantities: the distance to mirror
threshold, the amplitude of mirror fluctuations and the skewness of the
magnetic amplitude distribution as a marker of the shape of the structures.
These behaviours are confronted to numerical simulations which confirm the
dynamical perspective gained from the association of the statistical analysis
and the analytical model: magnetic peaks are mostly formed just behind the
shock and are quickly overwhelmed by magnetic holes as the plasma conditions
get more mirror stable. The amplitude of the fluctuations are found to
saturate before the skewness vanishes, i.e. when both structures
quantitatively balance each other, which typically occurs after a flow time
of 100–200 s in the Earth's magnetosheath. Comparison with other astrophysical
contexts is discussed
Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: from fluid to kinetic modeling
The nonlinear evolution of collisionless plasmas is typically a multi-scale
process where the energy is injected at large, fluid scales and dissipated at
small, kinetic scales. Accurately modelling the global evolution requires to
take into account the main micro-scale physical processes of interest. This is
why comparison of different plasma models is today an imperative task aiming at
understanding cross-scale processes in plasmas. We report here the first
comparative study of the evolution of a magnetized shear flow, through a
variety of different plasma models by using magnetohydrodynamic, Hall-MHD,
two-fluid, hybrid kinetic and full kinetic codes. Kinetic relaxation effects
are discussed to emphasize the need for kinetic equilibriums to study the
dynamics of collisionless plasmas in non trivial configurations. Discrepancies
between models are studied both in the linear and in the nonlinear regime of
the magnetized Kelvin-Helmholtz instability, to highlight the effects of small
scale processes on the nonlinear evolution of collisionless plasmas. We
illustrate how the evolution of a magnetized shear flow depends on the relative
orientation of the fluid vorticity with respect to the magnetic field direction
during the linear evolution when kinetic effects are taken into account. Even
if we found that small scale processes differ between the different models, we
show that the feedback from small, kinetic scales to large, fluid scales is
negligable in the nonlinear regime. This study show that the kinetic modeling
validates the use of a fluid approach at large scales, which encourages the
development and use of fluid codes to study the nonlinear evolution of
magnetized fluid flows, even in the colisionless regime
IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch
The dayside magnetopause is the primary site of energy transfer from the solar wind into the magnetosphere, and modulates the activity observed within the magnetosphere itself. Specific plasma processes operating on the magnetopause include magnetic reconnection, generation of boundary waves, propagation of pressure-pulse induced deformations of the boundary, formation of boundary layers and generation of Alfvén waves and field-aligned current systems connecting the boundary to the inner magnetosphere and ionosphere. However, many of the details of these processes are not fully understood. For example, magnetic reconnection occurs sporadically, producing flux transfer events, but how and where these arise, and their importance to the global dynamics of the magnetospheric system remain unresolved. Many of these phenomena involve propagation across the magnetopause surface. Measurements at widely-spaced (Δ ˜ 5 RE) intervals along the direction of dayside terrestrial field lines at the magnetopause would be decisive in resolving these issues. We describe a mission carrying a fields and plasmas payload (including magnetometer, ion and electron spectrometer and energetic particle telescopes) on three identical spacecraft in synchronized orbits. These provide the needed separations, with each spacecraft skimming the dayside magnetopause and continuously sampling this boundary for many hours. The orbits are phased such that (i) all three spacecraft maintain common longitude and thus sample along the same magnetopause field line; (ii) the three spacecraft reach local midday when northern European ground-based facilities also lie near local midday, enabling simultaneous sampling of magnetopause field lines and their footprints
The oblique firehose instability in a bi-kappa magnetized plasma
In this work, we derive a dispersion equation that describes the excitation
of the oblique (or Alfv\'en) firehose instability in a plasma that contains
both electron and ion species modelled by bi-kappa velocity distribution
functions. The equation is obtained with the assumptions of low-frequency waves
and moderate to large values of the parallel (respective to the ambient
magnetic field) plasma beta parameter, but it is valid for any direction of
propagation and for any value of the particle gyroradius (or Larmor radius).
Considering values for the physical parameters typical to those found in the
solar wind, some solutions of the dispersion equation, corresponding to the
unstable mode, are presented. In order to implement the dispersion solver,
several new mathematical properties of the special functions occurring in a
kappa plasma are derived and included. The results presented here suggest that
the superthermal characteristic of the distribution functions leads to
reductions to both the maximum growth rate of the instability and of the
spectral range of its occurrence
Nonlinear theory of mirror instability near threshold
An asymptotic model based on a reductive perturbative expansion of the drift
kinetic and the Maxwell equations is used to demonstrate that, near the
instability threshold, the nonlinear dynamics of mirror modes in a magnetized
plasma with anisotropic ion temperatures involves a subcritical
bifurcation,leading to the formation of small-scale structures with amplitudes
comparable with the ambient magnetic field
MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE
Accepted for publication in The Astrophysical Journal, March 21, 201
- …
