2,209 research outputs found

    Heavy Baryons with Strangeness in a Soliton Model

    Get PDF
    We present results from a chiral soliton model calculation for the spectrum of baryons with a single heavy quark (charm or bottom) and non-zero strangeness. We treat the strange components within a three flavor collective coordinate quantization of the soliton that fully accounts for light flavor symmetry breaking. Heavy baryons emerge by binding a heavy meson to the soliton. The dynamics of this heavy meson is described by the heavy quark effective theory with finite mass effects included.Comment: Ten pages, one figures, two tables, version to be published in PL

    A Bethe--Salpeter Description of Light Mesons

    Full text link
    We present a covariant approach to describe the low--lying scalar, pseudoscalar, vector and axialvector mesons as quark--antiquark bound states.This approach is based on an effective interaction modeling of the non--perturbative structure of the gluon propagator that enters the quark Schwinger--Dyson and meson Bethe--Salpeter equations. We extract the meson masses and compute the pion and kaon decay constants. We obtain a quantitatively correct description for pions, kaons and vector mesons while the calculated spectra of scalar and axialvector mesons suggest that their structure is more complex than being quark--antiquark bound states.Comment: Talk presented by HW at the international Scalar Meson Workshop, Utica, NY, May 2003; 12 pages, uses aip style file

    Soliton Models for the Nucleon and Predictions for the Nucleon Spin Structure

    Get PDF
    In these lectures the three flavor soliton approach for baryons is reviewed. Effects of flavor symmetry breaking in the baryon wave--functions on axial current matrix elements are discussed. A bosonized chiral quark model is considered to outline the computation of spin dependent nucleon structure functions in the soliton picture.Comment: 12 pages, Lectures presented at the Advanced Study Institute Symmetry and Spin, Prague, 2001, to appear in the proceedings. References correcte

    Quantum stabilization of Z-strings, a status report on D=3+1 dimensions

    Full text link
    We investigate an extension to the phase shift formalism for calculating one-loop determinants. This extension is motivated by requirements of the computation of Z-string quantum energies in D=3+1 dimensions. A subtlety that seems to imply that the vacuum polarization diagram in this formalism is (erroneously) finite is thoroughly investigated.Comment: Based on talk by O.S. at QFEXT07, Leipzig Sept. 2007. 8 page

    Hyaluronan synthase mediates dye translocation across liposomal membranes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyaluronan (HA) is made at the plasma membrane and secreted into the extracellular medium or matrix by phospolipid-dependent hyaluronan synthase (HAS), which is active as a monomer. Since the mechanism by which HA is translocated across membranes is still unresolved, we assessed the presence of an intraprotein pore within HAS by adding purified <it>Streptococcus equisimilis </it>HAS (SeHAS) to liposomes preloaded with the fluorophore Cascade Blue (CB).</p> <p>Results</p> <p>CB translocation (efflux) was not observed with mock-purified material from empty vector control <it>E. coli </it>membranes, but was induced by SeHAS, purified from membranes, in a time- and dose-dependent manner. CB efflux was eliminated or greatly reduced when purified SeHAS was first treated under conditions that inhibit enzyme activity: heating, oxidization or cysteine modification with N-ethylmaleimide. Reduced CB efflux also occurred with SeHAS K48E or K48F mutants, in which alteration of K48 within membrane domain 2 causes decreased activity and HA product size. The above results used liposomes containing bovine cardiolipin (BCL). An earlier study testing many synthetic lipids found that the best activating lipid for SeHAS is tetraoleoyl cardiolipin (TO-CL) and that, in contrast, tetramyristoyl cardiolipin (TM-CL) is an inactivating lipid (Weigel et al, J. <it>Biol. Chem</it>. <b>281</b>, 36542, 2006). Consistent with the effects of these CL species on SeHAS activity, CB efflux was more than 2-fold greater in liposomes made with TO-CL compared to TM-CL.</p> <p>Conclusions</p> <p>The results indicate the presence of an intraprotein pore in HAS and support a model in which HA is translocated to the exterior by HAS itself.</p

    Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    Full text link
    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.Comment: 24 pages, LaTeX, 8 eps file

    Nucleon Structure Functions from a Chiral Soliton in the Infinite Momentum Frame

    Get PDF
    We study the frame dependence of nucleon structure functions obtained within a chiral soliton model for the nucleon. Employing light cone coordinates and introducing collective coordinates together with their conjugate momenta, translational invariance of the solitonic quark fields (which describe the nucleon as a localized object) is restored. This formulation allows us to perform a Lorentz boost to the infinite momentum frame of the nucleon. The major result is that the Lorentz contraction associated with this boost causes the leading twist contribution to the structure functions to properly vanish when the Bjorken variable xx exceeds unity. Furthermore we demonstrate that for structure functions calculated in the valence quark approximation to the Nambu--Jona--Lasinio chiral soliton model the Lorentz contraction also has significant effects on the structure functions for moderate values of the Bjorken variable xx.Comment: 16 pages, 1 figure, revised version to be published in Int. J. Mod. Phys.

    Parton distributions in the chiral quark model: a continuum computation

    Get PDF
    We compute the parton distributions for the chiral quark model. We present a new technique for performing such computations based on Green functions. This approach avoids a discretization of the spectrum. It therefore does not need any smoothing procedures. The results are similar to those of other groups, however the distributions peak at smaller xx.Comment: 19 pages, 8 Figures, LaTeX, some typos corrected, some additional comments in the conclusion

    Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements

    Get PDF
    Number concentrations of total and non-volatile aerosol particles with size diameters >0.01 μm as well as particle size distributions (0.4–23 μm diameter) were measured in situ in the Arctic lower stratosphere (10–20.5 km altitude). The measurements were obtained during the campaigns European Polar Stratospheric Cloud and Lee Wave Experiment (EUPLEX) and Envisat-Arctic-Validation (EAV). The campaigns were based in Kiruna, Sweden, and took place from January to March 2003. Measurements were conducted onboard the Russian high-altitude research aircraft Geophysica using the low-pressure Condensation Nucleus Counter COPAS (COndensation PArticle Counter System) and a modified FSSP 300 (Forward Scattering Spectrometer Probe). Around 18–20 km altitude typical total particle number concentrations nt range at 10–20 cm−3 (ambient conditions). Correlations with the trace gases nitrous oxide (N2O) and trichlorofluoromethane (CFC-11) are discussed. Inside the polar vortex the total number of particles >0.01 μm increases with potential temperature while N2O is decreasing which indicates a source of particles in the above polar stratosphere or mesosphere. A separate channel of the COPAS instrument measures the fraction of aerosol particles non-volatile at 250°C. Inside the polar vortex a much higher fraction of particles contained non-volatile residues than outside the vortex (~67% inside vortex, ~24% outside vortex). This is most likely due to a strongly increased fraction of meteoric material in the particles which is transported downward from the mesosphere inside the polar vortex. The high fraction of non-volatile residual particles gives therefore experimental evidence for downward transport of mesospheric air inside the polar vortex. It is also shown that the fraction of non-volatile residual particles serves directly as a suitable experimental vortex tracer. Nanometer-sized meteoric smoke particles may also serve as nuclei for the condensation of gaseous sulfuric acid and water in the polar vortex and these additional particles may be responsible for the increase in the observed particle concentration at low N2O. The number concentrations of particles >0.4 μm measured with the FSSP decrease markedly inside the polar vortex with increasing potential temperature, also a consequence of subsidence of air from higher altitudes inside the vortex. Another focus of the analysis was put on the particle measurements in the lowermost stratosphere. For the total particle density relatively high number concentrations of several hundred particles per cm3 at altitudes below ~14 km were observed in several flights. To investigate the origin of these high number concentrations we conducted air mass trajectory calculations and compared the particle measurements with other trace gas observations. The high number concentrations of total particles in the lowermost stratosphere are probably caused by transport of originally tropospheric air from lower latitudes and are potentially influenced by recent particle nucleation
    corecore