27,857 research outputs found

    Building Cross Cultural Competencies.

    Get PDF
    The Building Cross Cultural Competencies project was developed with the aim of equipping undergraduate students at the University of York with skills to work in the globalised world, while at the same time assisting with the induction and orientation of international students, new to the institution and to study in the UK. The inspiration for the programme dates back to 2006, when one of the authors visited three Universities in New Zealand and Australia. These Universities were perceived to be further down the route to internationalisation (as defined by Knight 2003) than was the norm in the UK at the time. Innovations observed at Massey and Waikato Universities in New Zealand and the University of Sydney, Australia, were redesigned and redeveloped for use at the University of York, with the agreement of the staff involved at those institutions. In particular, a cross cultural communication module and two distinctive peer mentor schemes provided the nucleus of the idea for a new initiative at York that would span the employability and internationalisation agendas This paper identifies how the project redesigned and developed ideas taken from Australian and New Zealand Universities for use in a UK context. It makes links to the literature on student adjustment and institutional adaptation; peer teaching and cross cultural communication skills. It will also consider the problems and difficulties experienced as the project progressed

    Improvements in estimating proportions of objects from multispectral data

    Get PDF
    Methods for estimating proportions of objects and materials imaged within the instantaneous field of view of a multispectral sensor were developed further. Improvements in the basic proportion estimation algorithm were devised as well as improved alien object detection procedures. Also, a simplified signature set analysis scheme was introduced for determining the adequacy of signature set geometry for satisfactory proportion estimation. Averaging procedures used in conjunction with the mixtures algorithm were examined theoretically and applied to artificially generated multispectral data. A computationally simpler estimator was considered and found unsatisfactory. Experiments conducted to find a suitable procedure for setting the alien object threshold yielded little definitive result. Mixtures procedures were used on a limited amount of ERTS data to estimate wheat proportion in selected areas. Results were unsatisfactory, partly because of the ill-conditioned nature of the pure signature set

    Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    Get PDF
    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used successfully in this case. This paper shows a highly testable architecture of a DNA Bio-Sensing array, its basic sensing concept, fluidic modeling and sensitivity analysis. The overall VHDL-AMS fault simulation of the system is shown

    Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Full text link
    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head.Comment: 18 pages, 8 figures, revised and accepted for ApJ, A full resolution of the paper can be found at http://gammaray.nsstc.nasa.gov/~nishikawa/apjep1.pd

    Particle Acceleration in Relativistic Jets due to Weibel Instability

    Full text link
    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation (Medvedev 2000) from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: ApJ, in press, Sept. 20, 2003 (figures with better resolution: http://gammaray.nsstc.nasa.gov/~nishikawa/apjweib.pdf

    Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    Get PDF
    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 1 figure, submitted to Proceedings of 2003 Gamma Ray Burst Conferenc

    The Extraordinarily Rapid Expansion of the X-ray Remnant of Kepler's Supernova (SN1604)

    Get PDF
    Four individual high resolution X-ray images from ROSAT and the Einstein Observatory have been used to measure the expansion rate of the remnant of Kepler's supernova (SN 1604). Highly significant measurements of the expansion have been made for time baselines varying from 5.5 yrs to 17.5 yrs. All measurements are consistent with a current expansion rate averaged over the entire remnant of 0.239 (+/-0.015) (+0.017,-0.010) % per yr, which, when combined with the known age of the remnant, determines the expansion parameter m, defined as RtmR\propto t^m, to be 0.93 (+/-0.06) (+0.07,-0.04). The error bars on these results include both statistical (first set of errors) and systematic (second set) uncertainty. According to this result the X-ray remnant is expanding at a rate that is remarkably close to free expansion and nearly twice as fast as the mean expansion rate of the radio remnant. The expansion rates as a function of radius and azimuthal angle are also presented based on two ROSAT images that were registered to an accuracy better than 0.5 arcseconds. Significant radial and azimuthal variations that appear to arise from the motion of individual X-ray knots are seen. The high expansion rate of the X-ray remnant appears to be inconsistent with currently accepted dynamical models for the evolution of Kepler's SNR.Comment: 14 pages, including 7 postscript figs, LaTeX, emulateapj. Accepted by Ap

    Herwig++ 2.0 Release Note

    Get PDF
    A new release of the Monte Carlo program Herwig++ (version 2.0) is now available. This is the first version of the program which can be used for hadron-hadron physics and includes the full simulation of both initial- and final-state QCD radiation.Comment: Source code and additional information available at http://hepforge.cedar.ac.uk/herwig

    X-ray emission from PSR B1800-21, its wind nebula, and similar systems

    Get PDF
    We detected X-ray emission from PSR B1800-21 and its synchrotron nebula with the Chandra X-ray Observatory. The pulsar's observed flux is (1.4+/-0.2) 10^{-14} ergs cm^{-2} s^{-1} in the 1-6 keV band. The spectrum can be described by a two-component PL+BB model, suggesting a mixture of thermal and magnetospheric emission. For a plausible hydrogen column density n_{H}=1.4 10^{22} cm^{-2}, the PL component has a slope Gamma=1.4+/-0.6 and a luminosity L_{psr}^{nonth}=4 10^{31}(d/4 kpc)^2 ergs s^{-1}. The properties of the thermal component (kT=0.1-0.3 keV, L^{bol}=10^{31}-10^{33} ergs s^{-1}) are very poorly constrained because of the strong interstellar absorption. The compact, 7''\times4'', inner pulsar-wind nebula (PWN), elongated perpendicular to the pulsar's proper motion, is immersed in a fainter asymmetric emission. The observed flux of the PWN is (5.5+/-0.6) 10^{-14} ergs cm^{-2} s^{-1} in the 1-8 keV band. The PWN spectrum fits by a PL model with Gamma=1.6+/-0.3, L=1.6 10^{32} (d/4 kpc})^2 ergs s^{-1}. The shape of the inner PWN suggests that the pulsar moves subsonically and X-ray emission emerges from a torus associated with the termination shock in the equatorial pulsar wind. The inferred PWN-pulsar properties (e.g., the PWN X-ray efficiency, L_{pwn}/\dot{E}~10^{-4}; the luminosity ratio, L_{pwn}/L_{psr}^{nonth}=4; the pulsar wind pressure at the termination shock, p_s=10^{-9} ergs cm^{-3}) are very similar to those of other subsonically moving Vela-like objects detected with Chandra (L_{pwn}/\dot{E}=10^{-4.5}-10^{-3.5}, L_{pwn}/L_{psr}^{nonth}~5, p_s=10^{-10}-10^{-8} ergs cm^{-1}).Comment: 11 pages, 10 figures, 2 tables; submitted to ApJ. Version with the high-resolution figures is available at http://www.astro.psu.edu/users/green/B1800/B1800_ApJ.pd
    corecore