770 research outputs found

    Electronic shell and supershell structure in graphene flakes

    Full text link
    We use a simple tight-binding (TB) model to study electronic properties of free graphene flakes. Valence electrons of triangular graphene flakes show a shell and supershell structure which follows an analytical expression derived from the solution of the wave equation for triangular cavity. However, the solution has different selection rules for triangles with armchair and zigzag edges, and roughly 40000 atoms are needed to see clearly the first supershell oscillation. In the case of spherical flakes, the edge states of the zigzag regions dominate the shell structure which is thus sensitive to the flake diameter and center. A potential well that is made with external gates cannot have true bound states in graphene due to the zero energy band gap. However, it can cause strong resonances in the conduction band.Comment: Presented in the ISSPIC-14 conference, Valladolid, September 200

    Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level

    Full text link
    The electronic shell structure of triangular, hexagonal and round graphene quantum dots (flakes) near the Fermi level has been studied using a tight-binding method. The results show that close to the Fermi level the shell structure of a triangular flake is that of free massless particles, and that triangles with an armchair edge show an additional sequence of levels ("ghost states"). These levels result from the graphene band structure and the plane wave solution of the wave equation, and they are absent for triangles with an zigzag edge. All zigzag triangles exhibit a prominent edge state at the Fermi level, and few low-energy conduction electron states occur both in triangular and hexagonal flakes due to symmetry reasons. Armchair triangles can be used as building blocks for other types of flakes that support the ghost states. Edge roughness has only a small effect on the level structure of the triangular flakes, but the effect is considerably enhanced in the other types of flakes. In round flakes, the states near the Fermi level depend strongly on the flake radius, and they are always localized on the zigzag parts of the edge

    Proximity Induced Josephson-Quasiparticle Process in a Single Electron Transistor

    Full text link
    We have performed the first experiments in a superconductor - normal metal - superconductor single electron transistor in which there is an extra superconducting strip partially overlapping the normal metal island in good metal-to-metal contact. Superconducting proximity effect gives rise to current peaks at voltages below the quasiparticle threshold. We interpret these peaks in terms of the Josephson-quasiparticle process and discuss their connection with the proximity induced energy gap in the normal metal island.Comment: 4 pages + 4 figure

    Close-Packing of Clusters: Application to Al_100

    Get PDF
    The lowest energy configurations of close-packed clusters up to N=110 atoms with stacking faults are studied using the Monte Carlo method with Metropolis algorithm. Two types of contact interactions, a pair-potential and a many-atom interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59, 61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and 102 are pure FCC clusters, the others having stacking faults. A connection between the model potential and density functional calculations is studied in the case of Al_100. The density functional calculations are consistent with the experimental fact that there exist epitaxially grown FCC clusters starting from relatively small cluster sizes. Calculations also show that several other close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure

    Parameterization of ion-induced nucleation rates based on ambient observations

    Get PDF
    Atmospheric ions participate in the formation of new atmospheric aerosol particles, yet their exact role in this process has remained unclear. Here we derive a new simple parameterization for ion-induced nucleation or, more precisely, for the formation rate of charged 2-nm particles. The parameterization is semi-empirical in the sense that it is based on comprehensive results of one-year-long atmospheric cluster and particle measurements in the size range ~1–42 nm within the EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions) project. Data from 12 field sites across Europe measured with different types of air ion and cluster mobility spectrometers were used in our analysis, with more in-depth analysis made using data from four stations with concomitant sulphuric acid measurements. The parameterization is given in two slightly different forms: a more accurate one that requires information on sulfuric acid and nucleating organic vapor concentrations, and a simpler one in which this information is replaced with the global radiation intensity. These new parameterizations are applicable to all large-scale atmospheric models containing size-resolved aerosol microphysics, and a scheme to calculate concentrations of sulphuric acid, condensing organic vapours and cluster ions

    Cooled video camera for optical investigations below 1 mK

    Get PDF
    An optical imaging system for milliKelvin temperatures has been developed based on a regular B/W surveillance camera (25 frames/s), with its CCD sensor inside the 4‐K vacuum can of our nuclear demagnetization cryostat. The heat leak to the nuclear stage, caused by the operation of the video camera, was reduced below 1 nW by careful rf shielding. The construction of the system and its limits of operation are discussed.Peer reviewe

    Vertical profiles of sub-3nm particles over the boreal forest

    Get PDF
    This work presents airborne observations of sub-3 nm particles in the lower troposphere and investigates new particle formation (NPF) within an evolving boundary layer (BL). We studied particle concentrations together with supporting gas and meteorological data inside the planetary BL over a boreal forest site in Hyytiala, southern Finland. The analysed data were collected during three flight measurement campaigns: May-June 2015, August 2015 and April-May 2017, including 27 morning and 26 afternoon vertical profiles. As a platform for the instrumentation, we used a Cessna 172 aircraft. The analysed flight data were collected horizontally within a 30 km distance from SMEAR II in Hyytiala and vertically from 100 m above ground level up to 2700 m. The number concentration of 1.5-3 nm particles was observed to be, on average, the highest near the forest canopy top and to decrease with increasing altitude during the mornings of NPF event days. This indicates that the precursor vapours emitted by the forest play a key role in NPF in Hyytiala. During daytime, newly formed particles were observed to grow in size and the particle population became more homogenous within the well-mixed BL in the afternoon. During undefined days with respect to NPF, we also detected an increase in concentration of 1.5-3 nm particles in the morning but not their growth in size, which indicates an interrupted NPF process during these undefined days. Vertical mixing was typically stronger during the NPF event days than during the undefined or non-event days. The results shed light on the connection between boundary layer dynamics and NPF.Peer reviewe

    Edge-dependent selection rules in magic triangular graphene flakes

    Full text link
    The electronic shell and supershell structure of triangular graphene quantum dots has been studied using density functional and tight-binding methods. The density functional calculations demonstrate that the electronic structure close to the Fermi energy is correctly described with a simple tight-binding model where only the p_z orbitals perpendicular to the graphene layer are included. The results show that (i) both at the bottom and at the top of the p_z band a supershell structure similar to that of free electrons confined in a triangular cavity is seen, (ii) close to the Fermi level the shell structure is that of free massless particles, (iii) triangles with armchair edges show an additional sequence of levels ('ghost states') absent for triangles with zigzag edges while the latter exhibit edge states, and (iv) the observed shell structure is rather insensitive to the edge roughness

    Electronic and thermal sequential transport in metallic and superconducting two-junction arrays

    Full text link
    The description of transport phenomena in devices consisting of arrays of tunnel junctions, and the experimental confirmation of these predictions is one of the great successes of mesoscopic physics. The aim of this paper is to give a self-consistent review of sequential transport processes in such devices, based on the so-called "orthodox" model. We calculate numerically the current-voltage (I-V) curves, the conductance versus bias voltage (G-V) curves, and the associated thermal transport in symmetric and asymmetric two-junction arrays such as Coulomb-blockade thermometers (CBTs), superconducting-insulator-normal-insulator-superconducting (SINIS) structures, and superconducting single-electron transistors (SETs). We investigate the behavior of these systems at the singularity-matching bias points, the dependence of microrefrigeration effects on the charging energy of the island, and the effect of a finite superconducting gap on Coulomb-blockade thermometry.Comment: 23 pages, 12 figures; Berlin (ISBN: 978-3-642-12069-5

    Resonant tunneling through a macroscopic charge state in a superconducting SET transistor

    Full text link
    We predict theoretically and observe in experiment that the differential conductance of a superconducting SET transistor exhibits a peak which is a complete analogue in a macroscopic system of a standard resonant tunneling peak associated with tunneling through a single quantum state. In particular, in a symmetric transistor, the peak height is universal and equal to e2/2πe^2/2\pi \hbar. Away from the resonance we clearly observe the co-tunneling current which in contrast to the normal-metal transistor varies linearly with the bias voltage.Comment: 11 pages, 3 figures, Fig. 1 available upon request from the first autho
    corecore